Skip to main content

Enhancing Security and Dependability of Industrial Networks with Opinion Dynamics

  • Conference paper
  • First Online:
Computer Security – ESORICS 2019 (ESORICS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11736))

Included in the following conference series:

Abstract

Opinion Dynamics poses a novel technique to accurately locate the patterns of an advanced attack against an industrial infrastructure, compared to traditional intrusion detection systems. This distributed solution provides profitable information to identify the most affected areas within the network, which can be leveraged to design and deploy tailored response mechanisms that ensure the continuity of the service. In this work, we base on this multi-agent collaborative approach to propose a response technique that permits the secure delivery of messages across the network. For such goal, our contribution is twofold: firstly, we redefine the existing algorithm to assess not only the compromise of nodes, but also the security and quality of service of communication links; secondly, we develop a routing protocol that prioritizes the secure paths throughout the topology considering the information obtained from the detection system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ICS-CERT: Overview of Cyber Vulnerabilities (2018). http://ics-cert.us-cert.gov/content/overview-cyber-vulnerabilities. Accessed July 2018

  2. Da Li, X., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans. Ind. Inform. 10(4), 2233–2243 (2014)

    Article  Google Scholar 

  3. Singh, S., Sharma, P.K., Moon, S.Y., Moon, D., Park, J.H.: A comprehensive study on apt attacks and countermeasures for future networks and communications: challenges and solutions. J. Supercomput. 1–32 (2016)

    Google Scholar 

  4. Lemay, A., Calvet, J., Menet, F., Fernandez, J.: Survey of publicly available reports on advanced persistent threat actors. Comput. Secur. 72, 26–59 (2018)

    Article  Google Scholar 

  5. Mitchell, R., Chen, I.-R.: A survey of intrusion detection techniques for cyber-physical systems. ACM Comput. Surv. (CSUR) 46(4), 55 (2014)

    Article  Google Scholar 

  6. Marchetti, M., Pierazzi, F., Colajanni, M., Guido, A.: Analysis of high volumes of network traffic for advanced persistent threat detection. Comput. Netw. 109, 127–141 (2016)

    Article  Google Scholar 

  7. Rubio, J.E., Alcaraz, C., Lopez, J.: Preventing advanced persistent threats in complex control networks. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 402–418. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_22

    Chapter  Google Scholar 

  8. Hegselmann, R., Krause, U., et al.: Opinion dynamics and bounded confidence models, analysis, and simulation. J. Artif. Soc. Soc. Simul. 5(3) (2002)

    Google Scholar 

  9. Badis, H., Al Agha, K.: QOLSR, QOS routing for ad hoc wireless networks using OLSR. Eur. Trans. Telecommun. 16(5), 427–442 (2005)

    Article  Google Scholar 

  10. Crawley, E., Nair, R., Rajagopalan, B., Sandick, H.: A framework for QoS-based routing in the internet. Technical report (1998)

    Google Scholar 

  11. Lin, C.R., Liu, J.-S.: QoS routing in ad hoc wireless networks. IEEE J. Sel. Areas Commun. 17(8), 1426–1438 (1999)

    Article  Google Scholar 

  12. Chen, L., Heinzelman, W.B.: A survey of routing protocols that support QoS in mobile ad hoc networks. IEEE Netw. 21(6), 30–38 (2007)

    Article  Google Scholar 

  13. Ogwu, F.J., Talib, M., Aderounmu, G.A., Adetoye, A.: A framework for quality of service in mobile ad hoc networks. Int. Arab J. Inf. Technol. 4(1), 33–40 (2007)

    Google Scholar 

  14. Chen, S., Nahrstedt, K.: An overview of quality of service routing for next-generation high-speed networks: problems and solutions. IEEE Netw. 12(6), 64–79 (1998)

    Article  Google Scholar 

  15. Sana, A.B., Iqbal, F., Mohammad, A.A.K.: Quality of service routing for multipath manets. In: 2015 International Conference on Signal Processing And Communication Engineering Systems (SPACES), pp. 426–431. IEEE (2015)

    Google Scholar 

  16. Ge, Y., Kunz, T., Lamont, L.: Quality of service routing in ad-hoc networks using OLSR. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences, 9 p. IEEE (2003)

    Google Scholar 

  17. Clausen, T., Jacquet, P.: Optimized link state routing protocol (OLSR). Technical report (2003)

    Google Scholar 

  18. Badis, H., Agha, K.A.: A distributed algorithm for multiple-metric link state QoS routing problem. In: Mobile And Wireless Communications Networks: (With CD-ROM), pp. 141–144. World Scientific (2003)

    Google Scholar 

  19. Badis, H., Agha, K.A.: Quality of service for the ad hoc optimized link state routing protocol (QOLSR) (2005)

    Google Scholar 

  20. Wang, Z., Crowcroft, J.: Quality-of-service routing for supporting multimedia applications. IEEE J. Sel. Areas Commun. 14(7), 1228–1234 (1996)

    Article  Google Scholar 

  21. Rubio, J.E., Roman, R., Alcaraz, C., Zhang, Y.: Tracking advanced persistent threats in critical infrastructures through opinion dynamics. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 555–574. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99073-6_27

    Chapter  Google Scholar 

  22. Nie, S., Wang, X., Zhang, H., Li, Q., Wang, B.: Robustness of controllability for networks based on edge-attack. PloS One 9(2), e89066 (2014)

    Article  Google Scholar 

  23. International Society of Automation: ISA-95 standard (2017). https://www.isa.org/isa95/. Accessed Dec 2017

  24. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in graphs applied to electric power networks. SIAM J. Discret. Math. 15(4), 519–529 (2002)

    Article  MathSciNet  Google Scholar 

  25. Pagani, G.A., Aiello, M.: The power grid as a complex network: a survey. Phys. A: Stat. Mech. Appl. 392(11), 2688–2700 (2013)

    Article  MathSciNet  Google Scholar 

  26. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)

    Article  Google Scholar 

  27. Bellman, R.: On a routing problem. Q. Appl. Math. 16(1), 87–90 (1958)

    Article  MathSciNet  Google Scholar 

  28. Marina, M.K., Das, S.R.: On-demand multipath distance vector routing in ad hoc networks. In: Ninth International Conference on Network Protocols, pp. 14–23. IEEE (2001)

    Google Scholar 

  29. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische mathematik 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  30. Fortz, B., Thorup, M.: Optimizing OSPF/IS-IS weights in a changing world. IEEE J. Sel. Areas Commun. 20(4), 756–767 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the research project SealedGRID (H2020-MSCA-RISE-2017), financed from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 777996, as well as by the project DISS-IIoT, financed by the University of Malaga (UMA) through the “I Plan Propio de Investigación y Transferencia”. Likewise, the work of the first author has been partially financed by the Spanish Ministry of Education under the FPU program (FPU15/03213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan E. Rubio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rubio, J.E., Manulis, M., Alcaraz, C., Lopez, J. (2019). Enhancing Security and Dependability of Industrial Networks with Opinion Dynamics. In: Sako, K., Schneider, S., Ryan, P. (eds) Computer Security – ESORICS 2019. ESORICS 2019. Lecture Notes in Computer Science(), vol 11736. Springer, Cham. https://doi.org/10.1007/978-3-030-29962-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29962-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29961-3

  • Online ISBN: 978-3-030-29962-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics