Skip to main content

3DTI-Net: Learn 3D Transform-Invariant Feature Using Hierarchical Graph CNN

  • Conference paper
  • First Online:
PRICAI 2019: Trends in Artificial Intelligence (PRICAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11671))

Included in the following conference series:

Abstract

Recently, emerging point cloud dedicated deep learning frameworks, such as PointNet and PointNet++, have achieved remarkable advantage in both accuracy and speed over traditional handcrafted ones. However, since the point coordinates of point clouds are represented in various local coordinate systems, most existing methods require additional preprocessing on raw point clouds. In this work, we design an efficient transform-invariant framework (named 3DTI-Net) for point cloud processing without the need of such preprocessing. 3DTI-Net consists of a transform invariant feature encoder as the front-end and a hierarchical graph convolutional neural network as the back-end. It achieves transform invariant feature extraction by learning inner 3D geometry information based on local graph representation. Experiments results on various classification and retrieval tasks show that, 3DTI-Net is able to learn 3D feature efficiently and can achieve state-of-the-art performance in rotated 3D object classification and retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldoma, A., et al.: Tutorial: point cloud library: three-dimensional object recognition and 6 dof pose estimation. IEEE Robot. Autom. Mag. 19(3), 80–91 (2012)

    Article  Google Scholar 

  2. Bai, S., Bai, X., Zhou, Z., Zhang, Z., Latecki, L.J.: Gift: a real-time and scalable 3D shape search engine. In: Computer Vision and Pattern Recognition, pp. 5023–5032 (2016)

    Google Scholar 

  3. Belongie, S.J., Malik, J., Puzicha, J.: Shape context: a new descriptor for shape matching and object recognition, pp. 831–837 (2000)

    Google Scholar 

  4. Bruna, J., Zaremba, W., Szlam, A., Lecun, Y.: Spectral networks and locally connected networks on graphs. In: International Conference on Learning Representations (2014)

    Google Scholar 

  5. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv Graphics (2015)

    Google Scholar 

  6. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Computer Vision and Pattern Recognition, pp. 77–85 (2017)

    Google Scholar 

  7. Cohen, T.S., Geiger, M., Kohler, J., Welling, M.: Spherical CNNS. In: International Conference on Learning Representations (2018)

    Google Scholar 

  8. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  9. Deng, H., Birdal, T., Ilic, S.: PPFNet: global context aware local features for robust 3D point matching (2018)

    Google Scholar 

  10. Esteves, C., Allenblanchette, C., Makadia, A., Daniilidis, K.: Learning SO(3) equivariant representations with spherical CNNs. arXiv Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  11. Furuya, T., Ohbuchi, R.: Deep aggregation of local 3D geometric features for 3D model retrieval. In: British Machine Vision Conference, pp. 121.1–121.12 (2016)

    Google Scholar 

  12. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  13. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

    Article  Google Scholar 

  14. Kanezaki, A., Matsushita, Y., Nishida, Y.: RotationNet: joint object categorization and pose estimation using multiviews from unsupervised viewpoints. In: Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  15. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on x-transformed points. In: NeurIPS (2018)

    Google Scholar 

  16. Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition, pp. 922–928 (2015)

    Google Scholar 

  17. Ortega, A., Frossard, P., Kovacevic, J., Moura, J.M.F., Vandergheynst, P.: Graph signal processing: overview, challenges, and applications. Proc. IEEE 106(5), 808–828 (2017)

    Article  Google Scholar 

  18. Qi, C.R., Su, H., Niebner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3D data. In: Computer Vision and Pattern Recognition, pp. 5648–5656 (2016)

    Google Scholar 

  19. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Neural Information Processing Systems, pp. 5099–5108 (2017)

    Google Scholar 

  20. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration, pp. 1848–1853 (2009)

    Google Scholar 

  21. Rusu, R.B., Blodow, N., Marton, Z., Beetz, M.: Aligning point cloud views using persistent feature histograms, pp. 3384–3391 (2008)

    Google Scholar 

  22. Sandryhaila, A., Moura, J.M.F.: Discrete signal processing on graphs. IEEE Trans. Signal Process. 61(7), 1644–1656 (2013)

    Article  MathSciNet  Google Scholar 

  23. Savva, M., et al.: Large-scale 3D shape retrieval from ShapeNet Core55. In: 3DOR (2017)

    Google Scholar 

  24. Su, H., Maji, S., Kalogerakis, E., Learnedmiller, E.G.: Multi-view convolutional neural networks for 3D shape recognition. In: International Conference on Computer Vision, pp. 945–953 (2015)

    Google Scholar 

  25. Tatsuma, A., Aono, M.: Multi-fourier spectra descriptor and augmentation with spectral clustering for 3D shape retrieval. Vis. Comput. 25(8), 785–804 (2009)

    Article  Google Scholar 

  26. Te, G., Hu, W., Zheng, A., Guo, Z.: RGCNN: regularized graph CNN for point cloud segmentation. In: ACM multimedia (2018)

    Google Scholar 

  27. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_26

    Chapter  Google Scholar 

  28. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.: Dynamic graph CNN for learning on point clouds. arXiv Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  29. Wen, F., Chu, L., Liu, P., Qiu, R.: A survey on nonconvex regularization based sparse and low-rank recovery in signal processing, statistics, and machine learning. IEEE Access 1 (2018). https://doi.org/10.1109/ACCESS.2018.2880454

    Article  Google Scholar 

  30. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  31. Yi, L., Su, H., Guo, X., Guibas, L.J.: SyncSpecCNN: synchronized spectral CNN for 3D shape segmentation. In: Computer Vision and Pattern Recognition, pp. 6584–6592 (2017)

    Google Scholar 

  32. Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T.: 3DMatch: learning local geometric descriptors from RGB-D reconstructions. In: CVPR (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rendong Ying .

Editor information

Editors and Affiliations

A Appendix

A Appendix

1.1 A.1 Proof of Property 1

Proof

Translation invariance can be easily achieved by the re-centering operation, To prove rotation invariance, let \({R} \in \mathbb {R}^{3 \times 3}\) be an arbitrary rotation matrix, and the rotated point cloud coordinates is XR. Then, the i-th feature satisfies:

$$\begin{aligned} \begin{aligned} f_i (X R )&= \left\| \left( h(L) X R \right) _i \right\| _2^2 \\&= \left\| \left( h(L) \right) _i X R \right\| _2^2 \\&= \left( h(L) \right) _i X R R^T X^T \left( h(L) \right) _i ^T \\&= \left( h(L) \right) _i X X^T \left( h(L) \right) _i ^T \\&= \left\| \left( h(L) X \right) _i \right\| _2^2 \ = \ f_i ( X ). \end{aligned} \end{aligned}$$
(4)

\(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, G., Liu, P., Wang, J., Ying, R., Wen, F. (2019). 3DTI-Net: Learn 3D Transform-Invariant Feature Using Hierarchical Graph CNN. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11671. Springer, Cham. https://doi.org/10.1007/978-3-030-29911-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29911-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29910-1

  • Online ISBN: 978-3-030-29911-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics