Skip to main content

Deep Neural Networks for Breast Cancer Diagnosis: Fine Needle Biopsy Scenario

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1033))

Abstract

In this study, we focus on the problem of computer-aided diagnosis of breast cancer using cytological images of fine needle biopsies. We explore the potential of modern deep neural network architectures by comparing five different convolutional neural networks trained to classify the specimen as either benign or malignant. For experimentation, we use 550 cytological images of fine needle biopsies from 50 patients, balanced between benign and malignant cases, acquired at the University Hospital in Zielona Góra, Poland. We found that the convolutional neural network Inception-v3 is the best model, reaching 91.86% accuracy and 0.97 value for area under the curve (AUC).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    There is a discussion whether palpation should or should not be recommended.

  2. 2.

    Although FNB is a type of biopsy, it is also classified as a cytology examination.

  3. 3.

    All of the models have been trained on a workstation with Intel i7-8700K CPU, 64 GB of RAM and 2 NVIDIA GeForce GTX 1080 Ti GPUs, each with 11 GB of memory.

References

  1. Brancato, B., Crocetti, E., Bianchi, S., Catarzi, S., Risso, G.G., Bulgaresi, P., Piscioli, F., Scialpi, M., Ciatto, S., Houssami, N.: Accuracy of needle biopsy of breast lesions visible on ultrasound: audit of fine needle versus core needle biopsy in 3233 consecutive samplings with ascertained outcomes. Breast 21(4), 449–454 (2012)

    Article  Google Scholar 

  2. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)

    Article  Google Scholar 

  3. Britton, P.: Fine needle aspiration or core biopsy. Breast 8(1), 1–4 (1999)

    Article  MathSciNet  Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)

    Google Scholar 

  5. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115 (2017)

    Article  Google Scholar 

  6. Filipczuk, P., Kowal, M., Obuchowicz, A.: Automatic breast cancer diagnosis based on k-means clustering and adaptive thresholding hybrid segmentation. In: Image Processing and Communications Challenges, vol. 3, pp. 295–302. Springer, Heidelberg (2011)

    Google Scholar 

  7. Filipczuk, P., Fevens, T., Krzyżak, A., Monczak, R.: Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. IEEE Trans. Med. Imaging 32(12), 2169–2178 (2013)

    Article  Google Scholar 

  8. George, Y.M., Bagoury, B.M., Zayed, H.H., Roushdy, M.I.: Automated cell nuclei segmentation for breast fine needle aspiration cytology. Signal Process. 93(10), 2804–2816 (2013)

    Article  Google Scholar 

  9. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS (2010)

    Google Scholar 

  10. Howlader, N., Noone, A., Krapcho, M., Garshell, J., Miller, D., Altekruse, S., Kosary, C., Yu, M., Ruhl, J., Tatalovich, Z., et al.: Seer cancer statistics review, 1975–2012. National Cancer Institute, Bethesda, MD (2015)

    Google Scholar 

  11. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708 (2017)

    Google Scholar 

  12. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)0.5 MB model size. arXiv preprint: arXiv:1602.07360 (2016)

  13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift arXiv preprint: arXiv:1502.03167 (2015)

  14. Kowal, M., Filipczuk, P.: Nuclei segmentation for computer-aided diagnosis of breast cancer. Int. J. Appl. Math. Comput. Sci. 24(1), 19–31 (2014)

    Article  MathSciNet  Google Scholar 

  15. Kowal, M., Filipczuk, P., Obuchowicz, A., Korbicz, J., Monczak, R.: Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images. Comput. Biol. Med. 43(10), 1563–1572 (2013)

    Article  Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS 2012), pp. 1097–1105 (2012)

    Google Scholar 

  17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  18. Liang, H., Tsui, B.Y., Ni, H., Valentim, C.C., Baxter, S.L., Liu, G., Cai, W., Kermany, D.S., Sun, X., Chen, J., et al.: Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat. Med. 25(3), 433–438 (2019)

    Article  Google Scholar 

  19. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  20. Parmar, D., Sawke, N., Sawke, G., et al.: Diagnostic application of computerised nuclear morphometric image analysis in fine needle aspirates of breast lesions. Saudi J. Health Sci. 4(1), 51 (2015)

    Article  Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition arXiv preprint: arXiv:1409.1556 (2014)

  22. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  23. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  24. Underwood, J.C.: Introduction to Biopsy Interpretation and Surgical Pathology. Springer, London (2012)

    Google Scholar 

  25. Vandenberghe, M.E., Scott, M.L., Scorer, P.W., Söderberg, M., Balcerzak, D., Barker, C.: Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer. Sci. Rep. 7, 45938 (2017)

    Article  Google Scholar 

  26. Weydert, J.A., Cohen, M.B.: Fine needle aspiration: current practice and recent developments. Lab. Med. 34(12), 851–854 (2003)

    Article  Google Scholar 

  27. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8697–8710 (2018)

    Google Scholar 

  28. Żejmo, M., Kowal, M., Korbicz, J., Monczak, R.: Classification of breast cancer cytological specimen using convolutional neural network. J. Phys. Conf. Ser. 783, 012060 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

T. Fevens, A. Krzyzak and B. Miselis were supported by the Natural Sciences and Engineering Research Council of Canada under Grants RGPIN-04929-2014 and RGPIN-2015-06412. M. Kowal and R. Monczak were supported by the National Science Centre, Poland (grant no. 2015/17/B/ST7/03704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Miselis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miselis, B., Fevens, T., Krzyżak, A., Kowal, M., Monczak, R. (2020). Deep Neural Networks for Breast Cancer Diagnosis: Fine Needle Biopsy Scenario. In: Korbicz, J., Maniewski, R., Patan, K., Kowal, M. (eds) Current Trends in Biomedical Engineering and Bioimages Analysis. PCBEE 2019. Advances in Intelligent Systems and Computing, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-030-29885-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29885-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29884-5

  • Online ISBN: 978-3-030-29885-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics