Skip to main content

Evaluating Strategies for Selecting Test Datasets in Recommender Systems

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11734))

Included in the following conference series:

  • 1332 Accesses

Abstract

Recommender systems based on collaborative filtering are widely used to predict users’ behaviour in large databases, where users rate items. The prediction model is built from a training dataset according to matrix factorization method and validated using a test dataset in order to measure the prediction error. Random selection is the most simple and instinctive way to build test datasets. Nevertheless, we could think about other deterministic methods to select test ratings uniformly along the database, in order to obtain a balanced contribution from all the users and items. In this paper, we perform several experiments of validating recommender systems using random and deterministic strategies to select test datasets. We considered a zigzag deterministic strategy that selects ratings uniformly across the rows and columns of the ratings matrix, following a diagonal path. After analysing the statistical results, we conclude that there are no particular advantages in considering the deterministic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  2. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 191–226. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_6

    Chapter  Google Scholar 

  3. Ahn, H.J.: A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Inf. Sci. 178(1), 37–51 (2008)

    Article  Google Scholar 

  4. Banik, R.: The movies dataset, version 7 (2017). https://www.kaggle.com/rounakbanik/the-movies-dataset

  5. Bell, R.M., Koren, Y.: Scalable collaborative filtering with jointly derived neighborhood interpolation weights. In: Seventh IEEE International Conference on Data Mining (ICDM 2007), pp. 43–52, October 2007

    Google Scholar 

  6. Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning for differing training and test distributions. In: In: ICML, pp. 81–88. ACM Press (2007)

    Google Scholar 

  7. Bobadilla, J., Serradilla, F., Bernal, J.: A new collaborative filtering metric that improves the behavior of recommender systems. Knowl. Based Syst. 23(6), 520–528 (2010)

    Article  Google Scholar 

  8. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of 19th International Conference on Computational Statistics, pp. 177–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3_16

    Chapter  Google Scholar 

  9. Harper, F.M., Konstan, J.A.: The MovieLens datasets: History and context. ACM Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2015)

    Article  Google Scholar 

  10. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)

    Article  Google Scholar 

  11. Hernando, A., Bobadilla, J., Ortega, F.: A non negative matrix factorization for collaborative filtering recommender systems based on a Bayesian probabilistic model. Knowl. Based Syst. 97, 188–202 (2016)

    Article  Google Scholar 

  12. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems. An Introduction. Cambridge University Press, New York (2011)

    Google Scholar 

  13. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  14. Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. In: Advances in Neural Information Processing Systems, pp. 1257–1264 (2008)

    Google Scholar 

  15. Ortega, F., Hernando, A., Bobadilla, J., Kang, J.H.: Recommending items to group of users using matrix factorization based collaborative filtering. Inf. Sci. 345, 313–324 (2016)

    Article  Google Scholar 

  16. Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994)

    Article  Google Scholar 

  17. Rendle, S., Schmidt-Thieme, L.: Online-updating regularized kernel matrix factorization models for large-scale recommender systems. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 251–258 (2008)

    Google Scholar 

  18. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 1–35. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_1

    Chapter  MATH  Google Scholar 

  19. Storkey, A.J.: When training and test sets are different: characterising learning transfer. In: Dataset Shift in Machine Learning, pp. 3–28. MIT Press (2009)

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Government of Extremadura under the project IB16002, and by the AEI (State Research Agency, Spain) and the ERDF (European Regional Development Fund, EU) under the contract TIN2016-76259-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Gómez-Pulido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pajuelo-Holguera, F., Gómez-Pulido, J.A., Ortega, F. (2019). Evaluating Strategies for Selecting Test Datasets in Recommender Systems. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29859-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29858-6

  • Online ISBN: 978-3-030-29859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics