Skip to main content

Sporothrichosis

  • Chapter
  • First Online:
  • 1172 Accesses

Abstract

Sporothrix schenckii is currently recognized as a species complex consisting of Sporothrix brasiliensis, Sporothrix schenckii sensu stricto, Sporothrix globosa, and Sporothrix luriei. Due to divergent evolutionary process, each species possesses different virulence profiles, that allow it to thrive and persist in its niche. Currently the disease in cats is primarily caused by S. brasiliensis, S. schenckii sensu stricto and S. globosa, with cat fights and direct inoculation of the agent in the skin as the main mode of disease transmission. Expression of putative virulence factors, such as adhesins, ergosterol peroxide, melanin, proteases, extracellular vesicles and thermotolerance, determines the clinical manifestation in the feline patient, with thermotolerant S. brasiliensis exhibiting the highest pathogenicity, followed by S. schenckii sensu stricto, and S. globosa. Their ability to produce biofilm is documented, but their clinical significance remains to be elucidated. Despite comprehensive descriptions of the pathogenicity of the agent and of the disease, its prognosis remains guarded to poor, due to issues pertaining to cost, protracted treatment course, zoonotic potential and low susceptibility of some strains to antifungals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schenck BR. On refractory subcutaneous abscess caused by a fungus possibly related to the Sporotricha. Bull Johns Hopkins Hosp. 1898;9:286–90.

    Google Scholar 

  2. Larone DH. Identification of fungi in culture. In: Medically important fungi: a guide to identification. 5th ed. Washington, DC: ASM Press; 2011. p. 166–7.

    Google Scholar 

  3. Schubach A, Schubach TM, Barros MB, Wanke B. Cat-transmitted sporotrichosis, Rio de Janeiro, Brazil. Emerg Infect Dis. 2005;11(1):1952–4.

    PubMed  PubMed Central  Google Scholar 

  4. Rodrigues AM, de Hoog GS, de Camargo ZP. Sporothrix Species Causing Outbreaks in Animals and Humans Driven by Animal–Animal Transmission. PLoSPathog. 2016;12:e1005638. https://doi.org/10.1371/journal.ppat.100.

    Article  Google Scholar 

  5. Gremião ID, Menezes RC, Schubach TM, Figueiredo AB, Cavalcanti MC, Pereira SA. Feline sporotrichosis: epidemiological and clinical aspects. Med Mycol. 2015;53(1):15–21.

    PubMed  Google Scholar 

  6. Gremião IDF, Miranda LHM, Reis EG, Rodrigues AM, Pereira AS. Zoonotic epidemic of sporotrichosis: cat to human transmission. PLoS Pathog. 2017;13(1):1–7.

    Google Scholar 

  7. Tang MM, Tang JJ, Gill P, Chang CC, Baba R. Cutaneous sporotrichosis: a six-year review of 19 cases in a tertiary referral center in Malaysia. Int J Dermatol. 2012;51:702–8.

    PubMed  Google Scholar 

  8. Marimon R, Cano J, Gene J, Sutton DA, Kawasaki M, Guarro J. Sporothrix brasiliensis, S. globosa, and S. mexicana, three new Sporothrix species of clinical interest. J Clin Microbiol. 2007;45:3198-206.

    Google Scholar 

  9. Arrillaga-Moncrieff CJ, Mayayo E, Marimon R, Marine M, Gene J, et al. Different virulence levels of the species of Sporothrix in a murine model. Clin Microbiol Infect. 2009;15:651–5.

    CAS  PubMed  Google Scholar 

  10. Rodrigues AM, de Melo Teixeira M, de Hoog GS, TMP S, Pereira SA, Fernandes GF, et al. Phylogenetic analysis reveals a high prevalence of Sporothrix brasiliensis in feline sporotrichosis outbreaks. PLoS Negl Trop Dis. 2013;7(6):e2281.

    PubMed  PubMed Central  Google Scholar 

  11. Oliveira MME, Almeida-Paes R, Muniz MM, Barros MBL, Gutierrez-Galhardo MC, Zancope-Oliveira RM. Sporotrichosis caused by Sporothrix globosa in Rio de Janeiro, Brazil: case report. Mycopathologia. 2010;169:359–63.

    PubMed  Google Scholar 

  12. Oliveira MME, Almeida-Paes R, Muniz MM, Gutierrez-Galhardo MC, Zancope-Oliveira RM. Phenotypic and molecular identification of Sporothrix isolates from an epidemic area of sporotrichosis in Brazil. Mycopathologia. 2011;172(4):257–67.

    PubMed  Google Scholar 

  13. Zhou X, Rodrigues A, Feng P, Hoog GS. Global ITS diversity in the Sporothrix schenckii complex. Fungal Divers. 2013:1–13.

    Google Scholar 

  14. Han HS, Kano R, Chen C, Noli C. Comparisons of two in vitro antifungal sensitivity tests and monitoring during therapy of Sporothrix schenckii sensu stricto in Malaysian cats. Vet Dermatol. 2017;28:156–e32.

    PubMed  Google Scholar 

  15. Kano R, Okubo M, Siew HH, Kamata H, Hasegawa A. Molecular typing of Sporothrix schenckii isolates from cats in Malaysia. Mycoses. 2015;58:220–4.

    CAS  PubMed  Google Scholar 

  16. Watanabe M, Hayama K, Fujita H, Yagoshi M, Yarita K, Kamei K, et al. A case of Sporotrichosis caused by Sporothrix globosa in Japan. Ann Dermatol. 2016;28:251–2.

    PubMed  PubMed Central  Google Scholar 

  17. Yu X, Wan Z, Zhang Z, Li F, Li R, Liu X. Phenotypic and molecular identification of Sporothrix isolates of clinical origin in Northeast China. Mycopathologia. 2013;176:67–74.

    PubMed  PubMed Central  Google Scholar 

  18. Madrid H, Cano J, Gene J, Bonifaz A, Toriello C, Guarro J. Sporothrix globosa, a pathogenic fungus with widespread geographical distribution. Rev Iberoam Micol. 2009;26(3):218–22.

    PubMed  Google Scholar 

  19. Mahmoudi S, Zaini F, Kordbacheh P, Safara M, Heidari M. Sporothrix schenckii complex in Iran: molecular identification and antifungal susceptibility. Med Mycol. 2016;54:593–9.

    PubMed  Google Scholar 

  20. Suzuki R, Yikelamu A, Tanaka R, Igawa K, Yokodeki H, Yaguchi T. Studies in phylogeny, development of rapid identification methods, antifungal susceptibility and growth rates of clinical strains of Sporothrix schenckii Complex in Japan. Med Mycol J. 2016;57E:E47–57.

    Google Scholar 

  21. Thomson J, Trott DJ, Malik R, Galgut B, McAllister MM, Nimmo J et al. An atypical cause of sporotrichosis in a cat. Med Mycol Case Reports. 2019;23:72-6.

    Google Scholar 

  22. Barros MB, Paes RA, Schubach AO. Sporothrix schenckii and Sporotrichosis. Clin Microbiol Rev. 2011;24:633–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rossato L, Moreno F, Jamalian A, Stielow B, Almeida R, de Hoog S, et al. Proteins potentially involved in immune evasion strategies in Sporothrix brasiliensis elucidated by high resolution mass spectrometry. mSphere. 2018;13:e00514–7.

    Google Scholar 

  24. Teixeira PA, de Castro RA, Nascimento RC, Tronchin G, Torres AP, Lazéra M, et al. Cell surface expression of adhesins for fibronectin correlates with virulence in Sporothrix schenckii. Microbiology. 2009;155:3730–8.

    CAS  PubMed  Google Scholar 

  25. López-Esparza A, Álvarez-Vargas A, Mora-Montes HM, Hernández-Cervantes A, Del Carmen C-CM, Flores-Carreón A. Isolation of Sporothrix schenckii GDA1 and functional characterization of the encoded guanosine diphosphatase activity. Arch Microbiol. 2013;195:499–506.

    PubMed  Google Scholar 

  26. Morris-Jones R, Youngchim S, Gomez BL, Aisen P, Hay RJ, Nosanchuk JD, et al. Synthesis of melanin-like pigments by Sporothrix schenckii in vitro and during mammalian infection. Infect Immun. 2003;71:4026–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Teixeira PA, De Castro RA, Ferreira FR, Cunha MM, Torres AP, Penha CV, et al. L-DOPA accessibility in culture medium increases melanin expression and virulence of Sporothrix schenckii yeast cells. Med Mycol. 2010;48:687–95.

    CAS  PubMed  Google Scholar 

  28. Nosanchuk JD, Casadevall A. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother. 2006;50:3519–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sgarbi DB, da Silva AJ, Carlos IZ, Silva CL, Angluster J, Alviano CS. Isolation of ergosterol peroxide and its reversion to ergosterol in the pathogenic fungus Sporothrix schenckii. Mycopathologia. 1997;139:9–14.

    CAS  PubMed  Google Scholar 

  30. Lei PC, Yoshiike T, Ogawa H. Effects of proteinase inhibitors on cutaneous lesion of Sporothrix schenckii inoculated hairless mice. Mycopathologia. 1993;123:81–5.

    CAS  PubMed  Google Scholar 

  31. Joffe LS, Nimrichter L, Rodrigues ML, Del Poeta M. Potential roles of fungal extracellular vesicles during infection. mSphere. 2016;1:e00099–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O, et al. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell. 2007;6:48–59.

    CAS  PubMed  Google Scholar 

  33. Rodrigues ML, Nimrichter L, Oliveira DL, Nosanchuk JD, Casadevall A. Vesicular trans-cell wall transport in fungi: a mechanism for the delivery of virulence-associated macromolecules? Lipid Insights. 2008;2:27–40.

    CAS  PubMed  Google Scholar 

  34. Albuquerque PC, Nakayasu ES, Rodrigues ML, Frases S, Casadevall A, Zancope-Oliveira RM, et al. Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol. 2008;10:1695–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vallejo MC, Matsuo AL, Ganiko L, Medeiros LC, Miranda K, Silva LS, et al. The pathogenic fungus Paracoccidioides brasiliensis exports extracellular vesicles containing highly immunogenic-galactosyl epitopes. Eukaryot Cell. 2011;10:343–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Vargas G, Rocha JD, Oliveira DL, Albuquerque PC, Frases S, Santos SS, et al. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol. 2015;17:389–407.

    CAS  PubMed  Google Scholar 

  37. Rayner S, Bruhn S, Vallhov H, Anderson A, Billmyre RB, Scheynius A. Identification of small RNAs in extracellular vesicles from the commensal yeast Malassezia sympodialis. Sci Rep. 2017;7:39742.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ikeda MAK, de Almeida JRF, Jannuzzi GP, Cronemberger-Andrade A, Torrecilhas ACT, Moretti NS, et al. Extracellular vesicles from Sporothrix brasiliensis are an important virulence factor that induce an increase in fungal burden in experimental sporotrichosis. Front Microbiol. 2018;9:2286.

    PubMed  PubMed Central  Google Scholar 

  39. Huang SH, Wu CH, Chang YC, Kwon-Chung KJ, Brown RJ, Jong A. Cryptococcus neoformans-derived microvesicles enhance the pathogenesis of fungal brain infection. PLoS One. 2012;7:e48570.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rossato L, Moreno F, Jamalian A, Stielow B, Almeida R, de Hoog S, et al. Proteins potentially involved in immune evasion strategies in Sporothrix brasiliensis elucidated by ultra-high-resolution mass spectrometry. mSphere. 2018;3:e00514–7.

    PubMed  PubMed Central  Google Scholar 

  41. Nimrichter L, de Souza MM, Del Poeta M, Nosanchuk JD, Joffe L, Tavares PM, Rodrigues ML. Extracellular vesicle-associated transitory cell wall components and their impact on the interaction of fungi with host cells. Front Microbiol. 2016;7:1034.

    PubMed  PubMed Central  Google Scholar 

  42. Brilhante RSN, de Aguiar FRM, da Silva MLQ, de Oliveira JS, de Camargo ZP, Rodgrigues AM, et al. Antifungal susceptibility of Sporothrix schenckii complex biofilms. Med Mycol. 2018;56:297–306.

    CAS  PubMed  Google Scholar 

  43. Carlos IZ, Sassá MF, da Graca Sgarbi DB, MCP P, DCG M. Current research on the immune response to experimental sporotrichosis. Mycopathologia. 2009;168:1–10.

    CAS  PubMed  Google Scholar 

  44. Negrini Tde C, Ferreira LS, Alegranci P, Arthur RA, Sundfeld PP, Maia DC, et al. Role of TLR-2 and fungal surface antigen on innate immune response against Sporothrix schenckii. Immuno Invest. 2013;42:36–48.

    Google Scholar 

  45. Fernandes KS, Neto EH, Brito MM, Silva JS, Cunha FQ, Barja-Fidalgo C. Detrimental role of endogenous nitric oxide in host defense againsts Sporothrix schenckii. Immunology. 2008;123:469–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Brummer E, Division DA. Antifungal mechanism of activated murine bronchoalveolar or peritoneal macrophages for Histoplasma capsulatum. Clin Exp Immunol. 1995;102:65–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bocca L, Hayashi EE, Pinheiro G, Furlanetto B, Campanelli P, Cunha FQ, et al. Treatment of Paracoccidioides brasiliensis-infected mice with a nitric oxide inhibitor prevents the failure of cell-mediated immune response. J Immunol. 1998;161:3056–63.

    CAS  PubMed  Google Scholar 

  48. Torinuki W, Tagami H. Complement activation by Sporothrix schenckii. Arch Dermatol Res. 1985;277:332–3.

    CAS  PubMed  Google Scholar 

  49. de Lima FD, Nascimento RC, Ferreira KS, Almeida SR. Antibodies against Sporothrix schenckii enhance TNF-alpha production and killing by macrophages. Scand J Immunol. 2012;75:142–6.

    Google Scholar 

  50. Ruiz-Baca E, Toreillo C, Perez-Torres A, Sabanero-López M, Villagómez-Castro JC, López-Romero E. Isolation and some properties of a glycoprotein of 70 kDa (Gp70) from the cell wall of Sporothrix shcenckii cell wall. Mem Inst Oswaldo Cruz. 2009;47:185–96.

    CAS  Google Scholar 

  51. Maia DC, Sassá MF, Placeres MC, Carlos IZ. Influence of Th1/Th2 cytokines and nitric oxide in murine systemic infection induced by Sporothrix schenckii. Mycopathologia. 2006;161:11–9.

    CAS  PubMed  Google Scholar 

  52. Plouffe JF, Silva J, Fekety R, Reinhalter E, Browne R. Cell-mediated immune responses III sporotrichosis. J Infect Dis. 1979;139:152–7.

    PubMed  Google Scholar 

  53. Goncalves AC, Ferreira LS, Manente FA, de Faria CMQG, Polesi MC, de Andrade CR, et al. The NLRP3 inflammasome contributes to host protection during Sporothrix schenckii infection. Immunology. 2017;151:154–66.

    PubMed  PubMed Central  Google Scholar 

  54. Tachibana T, Matsuyama T, Mitsuyama M. Involvement of CD4+ T cells and macrophages in acquired protection against infection with Sporothrix schenckii in mice. Med Mycol. 1999;37:397–404.

    CAS  PubMed  Google Scholar 

  55. Flores-García A, Velarde-Félix JS, Garibaldi-Becerra V, Rangel-Villalobos H, Torres-Bugarín O, Zepeda-Carrillo EA, et al. Recombinant murine IL-12 promotes a protective TH1/cellular response in Mongolian gerbils infected with Sporothrix schenckii. J Chemother. 2015;27:87–93.

    PubMed  Google Scholar 

  56. Han HS, Toh PY, Yoong HB, Loh HM, Tan LL, Ng YY. Canine and feline cutaneous screw-worm myiasis in Malaysia: clinical aspects in 76 cases. Vet Dermatol. 2018;29:442–e148.

    PubMed  Google Scholar 

  57. Schubach TM, Schubach A, Okamoto T, Barros MB, Figueiredo FB, Cuzzi T, et al. Evaluation of an epidemic of sporotrichosis in cats: 347 cases (1998–2001). J Am Vet Med Assoc. 2004;224(10):623–9.

    Google Scholar 

  58. Raskin RE, Meyer DJ. Skin and subcutaneous tissue. In: Canine and feline cytology. 2nd ed. St. Louis: Saunders Elsevier; 2010. p. 41–4.

    Google Scholar 

  59. Pereira SA, Menezes RC, Gremião ID, Silva JN, Honse Cde O, Figueiredo FB, et al. Sensitivity of cytopathological examination in the diagnosis of feline sporotrichosis. J Feline Med Surg. 2011;13:220–3.

    PubMed  Google Scholar 

  60. Jessica N, Sonia RL, Rodrigo C, Isabella DF, Tânia MP, Jeferson C, et al. Diagnostic accuracy assessment of cytopathological examination of feline sporotrichosis. Med Mycol. 2015;53(8):880–4.

    CAS  PubMed  Google Scholar 

  61. Gross TL, Ihrke PJ, Walder EJ, et al. Infectious nodular and diffuse granulomatous and pyogranulomatous diseases of the dermis. In: Skin disease of the dog and cat. 2nd ed. Oxford: Blackwell Science; 2005. p. 298–301.

    Google Scholar 

  62. Fernandes GF, Lopes-Bezerra LM, Bernardes-Engemann AR, Schubach TM, Dias MA, Pereira SA, et al. Serodiagnosis of sporotrichosis infection in cats by enzyme-linked immunosorbent assay using a specific antigen, SsCBF, and crude exoantigens. Vet Microbiol. 2011;147:445–9.

    PubMed  Google Scholar 

  63. Kano R, Watanabe K, Murakami M, Yanai T, Hasegawa A. Molecular diagnosis of feline sporotrichosis. Vet Rec. 2005;156:484–5.

    CAS  PubMed  Google Scholar 

  64. Reis EG, Gremião ID, Kitada AA, Rocha RF, Castro VP, Barros ML, et al. Potassium iodide capsule treatment of feline sporotrichosis. J Fel Med Surg. 2012;14:399–404.

    Google Scholar 

  65. Reis ÉG, Schubach TM, Pereira SA, Silva JN, Carvalho BW, Quintana MB, et al. Association of itraconazole and potassium iodide in the treatment of feline sporotrichosis: a prospective study. Med Mycol. 2016;54:684–90.

    CAS  PubMed  Google Scholar 

  66. Liang C, Shan Q, Zhang J, Li W, Zhang X, Wang J, et al. Pharmacokinetics and bioavailability of itraconazole oral solution in cats. J Fel Med Surg. 2016;18:310–4.

    Google Scholar 

  67. Ottonelli Stopiglia CD, Magagnin CM, Castrillón MR, Mendes SD, Heidrich D, Valente P, et al. Antifungal susceptibility and identification of Sporothrix schenckii complex isolated in Brazil. Med Mycol. 2014;52:56–64.

    CAS  PubMed  Google Scholar 

  68. Borba-Santos LP, Rodrigues AM, Gagini TB, Fernandes GF, Castro R, de Camargo ZP, et al. Susceptibility of Sporothrix brasiliensis isolates to amphotericin B, azoles, and terbinafine. Med Mycol. 2015;53:178–88.

    CAS  PubMed  Google Scholar 

  69. Han HS. The current status of feline sporotrichosis in Malaysia. Med Mycol J. 2017;58E:E107–13.

    Google Scholar 

  70. Francesconi G, Valle AC, Passos S, Reis R, Galhardo MC. Terbinafine (250mg/day): an effective and safe treatment of cutaneous sporotrichosis. J Eur Acad Dermatol Venereol. 2009;23:1273–6.

    CAS  PubMed  Google Scholar 

  71. Vettorato R, Heidrich D, Fraga F, Ribeiro AC, Pagani DM, Timotheo C, et al. Sporotrichosis by Sporothrix schenckii sensu stricto with itraconazole resistance and terbinafine sensitivity observed in vitro and in vivo: case report. Med Mycol Case Reports. 2018;19:18–20.

    Google Scholar 

  72. Almeida-Paes R, Figueiredo-Carvalho MHG, Brito-Santos F, Almeida-Silva F, Oliveira MME, Zancopé-Oliveira RM. Melanins protect Sporothrix brasiliensis and Sporothrix schenckii from the antifungal effects of terbinafine. PLoS One. 2016;11:e0152796. https://doi.org/10.1371/journal.pone.0152796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. De Souza CP, Lucas R, Ramadinha RH, Pires TB. Cryosurgery in association with itraconazole for the treatment of feline sporotrichosis. J Feline Med Surg. 2016;18:137–43.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, H.S. (2020). Sporothrichosis. In: Noli, C., Colombo, S. (eds) Feline Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-030-29836-4_15

Download citation

Publish with us

Policies and ethics