Skip to main content

Proactive Control System of Multicomponent General Anesthesia

  • Conference paper
  • First Online:
Creativity in Intelligent Technologies and Data Science (CIT&DS 2019)

Abstract

The article gives the analyses of modern automation systems for multicomponent general anaesthesia (MGA), the principles of their operation and controlled parameters. The article raises the question of a minimal set of monitored parameters giving a complete picture of the current state of the patient and his need for anaesthesia. The efficiency of using a proactive algorithm for optimal control of the MGA process has been shown. It has been stated that for the most effective assessment of the patient’s condition it is necessary to monitor the parameters of central and peripheral hemodynamic, oxygen transport, sedation level using the method of auditory evoked potentials, the level of neuromuscular blockade. Authors have developed the functional scheme of the automated system for controlling the process of multicomponent general anaesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kothari, D., Gupta, S., Sharma, C., Kothari, S.: Medication error in anaesthesia and critical care: a cause for concern. Indian J. Anesth. 54(3), 187–192 (2010)

    Article  Google Scholar 

  2. Yousefi, M., Heusden, K., Mitchell, I.M., Ansermino, M., Dumont, G.: A formally-verified safety system for closed-loop anesthesia. IFAC-PapersOnLine 50, 4424–4429 (2017). https://doi.org/10.1016/j.ifacol.2017.08.368

    Article  Google Scholar 

  3. Hemmerling, T., Arbeid, E., Wehbe, M., Cyr, S., Taddei, R., Zaouter, C.: Evaluation of a novel closed-loop total intravenous anaesthesia drug delivery system: a randomized controlled trial. Br. J. Anesth. 110 (2013). https://doi.org/10.1093/bja/aet001

    Article  Google Scholar 

  4. Absalom, A., Glen, J., Zwart, G.J.C., Schnider, T., Struys, M.: Target-controlled infusion: a mature technology. Anesth. Analg. 122, 70–78 (2015). https://doi.org/10.1213/ANE.0000000000001009

    Article  Google Scholar 

  5. Glen, J.: The development of ‘Diprifusor’: a TCI system for propofol. Anaesthesia 53(Suppl 1), 13–21 (1998). https://doi.org/10.1111/j.1365-2044.1998.53s115.x

    Article  Google Scholar 

  6. Egan, T.D.: Target-controlled drug delivery: progress toward an intravenous “Vaporizer” and automated anesthetic administration. Anesthesiology 99(5), 1214–1219 (2003)

    Article  Google Scholar 

  7. Hemmerling, T., Terrasini, N.: Robotic anesthesia: not the realm of science fiction any more. Curr. Opin. Anesth. 25(10), 1097 (2012)

    Google Scholar 

  8. Goudra, B., Singh, P.M.: Failure of sedasys: destiny or poor design. Anesth. Analg. 124, 686–688 (2016). https://doi.org/10.1213/ANE.0000000000001643

    Article  Google Scholar 

  9. Goudra, B.G., Singh, P.M., Chandrasekhara, V.: SEDASYS®, airway, oxygenation, and ventilation: anticipating and managing the challenges. Dig. Dis. Sci. 59 (2014). https://doi.org/10.1007/s10620-013-2996-z

    Article  Google Scholar 

  10. Wehbe, M., et al.: A technical description of a novel pharmacological anesthesia robot. J. Clin. Monit. Comput. 28 (2013). https://doi.org/10.1007/s10877-013-9451-8

    Article  Google Scholar 

  11. Hemmerling, T.M., Taddei, R., Wehbe, M., Morse, J., Cyr, S., Zaouter, C.: Robotic anesthesia - a vision for the future of anesthesia. Transl. Med. UniSa 1, 1–20 (2011)

    Google Scholar 

  12. Brodie, S.M., et al.: Closed-loop controlled propofol anesthesia with remifentanil administered either by target-controlled infusion or closed-loop control, p. S-357 (2015)

    Google Scholar 

  13. Sramek, B.B.: Thoracic electrical bioimpedance measurement of cardiac output. Crit. Care Med. 22(8), 1337–1339 (1994)

    Article  Google Scholar 

  14. Sramek, B.B.: Systemic Hemodynamics and Hemodynamic Management, p. 122 (2002). ISBN 1-59196-046-0

    Google Scholar 

  15. Sokologorsky, S.V.: Method of graphic representation of integral parameters of hemodynamics and oxygen transport. Her. Intensiv. Care № 1 C, 3–12 (2001). (in Russian)

    Google Scholar 

  16. Sokologorsky, S.V.: Monitor and computer security of anesthesia in abdominal interventions in obstetric and gynecological clinic. DMedSc thesis, Russian Academy of Medical Sciences. Scientific center of obstetrics, gynecology and Perinatology, Moscow (2003). (in Russian)

    Google Scholar 

  17. Jeanne, M., Logier, R., De Jonckheere, J., Tavernier, B.: Validation of a graphic measurement of heart rate variability to assess analgesia/nociception balance during general anesthesia. In: 2009 Proceeding Conference of IEEE Engineering in Medicine and Biology Society, pp. 1840–1843 (2009)

    Google Scholar 

  18. Kaul, H.L., Bharti, N.: Monitoring depth of anaesthesia. Indian J. Anaesth 46(4), 323–332 (2002)

    Google Scholar 

  19. Jeanne, M., Logier, R., De Jonckheere, J., Tavernier, B.: Heart rate variability during total intravenous anesthesia: effects of nociception and analgesia. AutonNeurosci 147, 91–96 (2009)

    Google Scholar 

  20. Ledowski, T., et al.: Monitoring of intra-operative nociception: skin conductance and surgical stress index versus stress hormone plasma levels. Anaesthesia 65, 1001–1006 (2010)

    Article  Google Scholar 

  21. Logier, R., Jeanne, M., et al.: PhisioDoloris: a monitoring device for analgesia/nociception balance evaluation using heart rate variability analysis. In: Proceeding Conference of IEEE Engineering in Medicine and Biology, vol. 1, pp. 1194–1197 (2010)

    Google Scholar 

  22. Safonov, M.Y.: Modeling and diagnostics of the functional state of left ventricle of cardiac hemodynamics based on the transformation of electro cardio. DMedSc thesis, Voronezh State Medical Academyn.a. N. N. Burdenko, Voronezh (1998). (in Russian)

    Google Scholar 

  23. Schüttler, J., Kloos, S., Schwilden, H., Stoeckel, H.: Total intravenous anesthesia with propofol and alfentanil by computer-assisted infusion. Anaesthesia 43(Suppl 1), 2–7 (1988)

    Article  Google Scholar 

  24. Al-Rifai, Z., Mulvey, D.: Principles of total intravenous anesthesia: basic pharmacokinetics and model descriptions. BJA Educ. 16(3), 92–97 (2015). https://doi.org/10.1093/bjaceaccp/mkv021

    Article  Google Scholar 

  25. Bibian, S., Dumont, G.A., Huzmezan, M., Ries, C.R.: Patient variability and uncertainty quantification in clinical anesthesia: part I - PKPD modeling and identification. In: Proceedings of the 2006 IFAC Symposium on Modelling and Control in Biomedical Systems (2006)

    Google Scholar 

  26. Struys, M.M., Sahinovic, M., Lichtenbelt, B.J., Vereecke, H.E., Absalom, A.R.: Optimizing intravenous drug administration by applying pharmacokinetic/pharmacodynamic concepts. BJA Br. J. Anaesth. 107(1), 38–47 (2011). Advance Access publication

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Yu. Petrova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sokolsky, V.M., Kitiashvili, I.Z., Petrova, I.Y., Sokolsky, M.V. (2019). Proactive Control System of Multicomponent General Anesthesia. In: Kravets, A., Groumpos, P., Shcherbakov, M., Kultsova, M. (eds) Creativity in Intelligent Technologies and Data Science. CIT&DS 2019. Communications in Computer and Information Science, vol 1084. Springer, Cham. https://doi.org/10.1007/978-3-030-29750-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29750-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29749-7

  • Online ISBN: 978-3-030-29750-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics