Skip to main content

Modeling a Microgrid Using Fuzzy Cognitive Maps

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1083))

Abstract

The energy problem is among the most important issues in the global community over the last decades. Worldwide researchers have focused their attention and work to the increased use of renewable energy sources as a solution to the greenhouse effect. The reduction of the emitted pollutants, as well as managing, controlling and saving energy, are key research items. This paper attempts to cover part of the load of the studied microgrid, which consists of three buildings of the University of Patras using the method of Fuzzy Cognitive Maps. The goal is using renewable energy sources to cover 20% of their total load, aiming to decongest the network at peak times.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Europäische Union. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union 5 (2009)

    Google Scholar 

  2. Aguilar, J.: A survey about fuzzy cognitive maps papers. Int. J. Comput. Cognit. 3(2), 27–33 (2005)

    Google Scholar 

  3. Bourgani, E., Stylios, C.D., Manis, G., Georgopoulos, V.C.: Time dependent fuzzy cognitive maps for medical diagnosis. In: Likas, A., Blekas, K., Kalles, D. (eds.) SETN 2014. LNCS (LNAI), vol. 8445, pp. 544–554. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07064-3_47

    Chapter  Google Scholar 

  4. Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 24(1), 65–75 (1986)

    Article  Google Scholar 

  5. Kosko, B.: Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence. No. QA76. 76. E95 K86 (1992)

    Google Scholar 

  6. Kosko, B.: Fuzzy Engineering, vol. 13. Prentice Hall, Upper Saddle River (1997)

    MATH  Google Scholar 

  7. Kosko, B.: Global stability of generalized additive fuzzy systems. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 28(3), 441–452 (1998)

    Article  Google Scholar 

  8. Ntarlas, O.D., Groumpos, P.P.: Unsupervised learning methods for foreign investment using fuzzy cognitive maps. In: 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA). IEEE (2015)

    Google Scholar 

  9. Anninou, A.P., Groumpos, P.P., Panagiotis, P.: Modeling health diseases using competitive fuzzy cognitive maps. In: Papadopoulos, H., Andreou, A.S., Iliadis, L., Maglogiannis, I. (eds.) AIAI 2013. IAICT, vol. 412, pp. 88–95. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41142-7_10

    Chapter  Google Scholar 

  10. Vergini, E.S., Groumpos, P.P.: A critical overview of net zero energy buildings and fuzzy cognitive maps. Int. J. Monit. Surveill. Technol. Res. (IJMSTR) 3(3), 20–43 (2015)

    Google Scholar 

  11. Glykas, M. (ed.): Fuzzy Cognitive Maps: Advances in Theory, Methodologies, Tools, and Applications. STUDFUZZ, vol. 247, 1st edn. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-03220-2

    Book  MATH  Google Scholar 

  12. Poczeta, K., Papageorgiou, E.I., Yastrebov, A.: Application of fuzzy cognitive maps to multi-step ahead prediction of electricity consumption. In: 2018 Conference on Electrotechnology: Processes, Models, Control and Computer Science (EPMCCS). IEEE (2018)

    Google Scholar 

  13. de Maya, B.N., Kurt, R.E.: Application of fuzzy cognitive maps to investigate the contributors of maritime grounding accidents. Human Factors. Royal Institution of Naval Architects (2018)

    Google Scholar 

  14. Amirkhani, A., et al.: A novel hybrid method based on fuzzy cognitive maps and fuzzy clustering algorithms for grading celiac disease. Neural Comput. Appl. 30(5), 1573–1588 (2018)

    Article  Google Scholar 

  15. Mohr, S.T.: Modelling approaches for multilayer fuzzy cognitive maps (2019)

    Google Scholar 

  16. Amirkhani, A., et al.: A review of fuzzy cognitive maps in medicine: Taxonomy, methods, and applications. Comput. Methods Progr. Biomed. 142, 129–145 (2017)

    Article  Google Scholar 

  17. Salmeron, J.L., Froelich, W., Papageorgiou, E.I.: Application of fuzzy cognitive maps to the forecasting of daily water demand. In: Proceedings of 2015 ITISE (2015)

    Google Scholar 

  18. Papageorgiou, E.I., Poczęta, K., Laspidou, C.: Application of fuzzy cognitive maps to water demand prediction. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE (2015)

    Google Scholar 

  19. Giabbanelli, P.J., Gray, S.A., Aminpour, P.: Combining fuzzy cognitive maps with agent-based modeling: frameworks and pitfalls of a powerful hybrid modeling approach to understand human-environment interactions. Environ. Model Softw. 95, 320–325 (2017)

    Article  Google Scholar 

  20. Osoba, O., Kosko, B.: Beyond DAGs: modeling causal feedback with fuzzy cognitive maps. arXiv preprint arXiv:1906.11247 (2019)

  21. Demertzis, K., Anezakis, V.-D., Iliadis, L., Spartalis, S.: Temporal modeling of invasive species’ migration in greece from neighboring countries using fuzzy cognitive maps. In: Iliadis, L., Maglogiannis, I., Plagianakos, V. (eds.) AIAI 2018. IAICT, vol. 519, pp. 592–605. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92007-8_50

    Chapter  Google Scholar 

  22. Mpelogianni, V., Groumpos, P.P.: A comparison study of fuzzy control versus fuzzy cognitive maps for energy efficiency of buildings

    Google Scholar 

  23. Mpelogianni, V., Groumpos, P.P.: Re-approaching fuzzy cognitive maps to increase the knowledge of a system. AI & Soc. 33(2), 175–188 (2018)

    Article  Google Scholar 

  24. Vassiliki, M., Peter, G.P.: Increasing the energy efficiency of buildings using human cognition; via fuzzy cognitive maps. IFAC-PapersOnLine 51(30), 727–732 (2018)

    Article  Google Scholar 

  25. Pogaku, N., Prodanovic, M., Green, T.C.: Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans. Power Electron. 22(2), 613–625 (2007)

    Article  Google Scholar 

  26. Ahamed, M.H.F., et al.: Modelling and simulation of a solar PV and battery based DC microgrid system. In: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE (2016)

    Google Scholar 

  27. Kitson, J., et al.: Modelling of an expandable, reconfigurable, renewable DC microgrid for off-grid communities. Energy 160, 142–153 (2018)

    Article  Google Scholar 

  28. Fathima, A.H., Palanisamy, K.: Optimization in microgrids with hybrid energy systems–a review. Renew. Sustain. Energy Rev. 45, 431–446 (2015)

    Article  Google Scholar 

  29. Kyriakarakos, G., et al.: Design of a fuzzy cognitive maps variable-load energy management system for autonomous PV-reverse osmosis desalination systems: a simulation survey. Appl. Energy 187, 575–584 (2017)

    Article  Google Scholar 

  30. Kottas, T., et al.: New operation scheme and control of smart grids using fuzzy cognitive networks. In: 2015 IEEE Eindhoven PowerTech. IEEE (2015)

    Google Scholar 

  31. Hawkes, A.D., Leach, M.A.: Modelling high level system design and unit commitment for a microgrid. Appl. Energy 86(7-8), 1253–1265 (2009)

    Article  Google Scholar 

  32. Abu-Sharkh, S., et al.: Can microgrids make a major contribution to UK energy supply? Renew. Sustain. Energy Rev. 10(2), 78–127 (2006)

    Article  Google Scholar 

  33. Li, Z., Yan, X.: Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes. Appl. Energy 210, 974–986 (2018)

    Article  Google Scholar 

  34. Ferreira, R.A.F., et al.: Analysis of voltage droop control method for DC microgrids with Simulink: modelling and simulation. In: 2012 10th IEEE/IAS International Conference on Industry Applications. IEEE (2012)

    Google Scholar 

  35. Groumpos, P.P.: Fuzzy cognitive maps: basic theories and their application to complex systems. In: Glykas, M. (ed.) Fuzzy Cognitive Maps. STUDFUZZ, vol. 247, pp. 1–22. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-03220-2_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter P. Groumpos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mpelogianni, V., Kosmas, G., Groumpos, P.P. (2019). Modeling a Microgrid Using Fuzzy Cognitive Maps. In: Kravets, A., Groumpos, P., Shcherbakov, M., Kultsova, M. (eds) Creativity in Intelligent Technologies and Data Science. CIT&DS 2019. Communications in Computer and Information Science, vol 1083. Springer, Cham. https://doi.org/10.1007/978-3-030-29743-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29743-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29742-8

  • Online ISBN: 978-3-030-29743-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics