Skip to main content

Throughfall and Stemflow: The Crowning Headwaters of the Aquatic Carbon Cycle

  • Chapter
  • First Online:
Precipitation Partitioning by Vegetation

Abstract

Dissolved organic matter (DOM) is a master variable that modulates the form and function of many ecosystems. Approximately, half of the mass of DOM is carbon. Fluxes of DOM transfer carbon and other vital elements between ecosystems and between organisms (e.g., trees to bacteria) and components (e.g., vegetation to soil) within ecosystems. The DOM flux out of trees and understory plants to the forest floor is a poorly studied component of the carbon and nutrient budgets of forest ecosystems. In freshwater systems, studies of DOM transport through terrestrial systems usually start at the stream. However, the interception of rainwater by vegetation marks the beginning of the terrestrial hydrological cycle making plant canopies the crowning headwaters of terrestrial aquatic carbon cycling. Rainwater interacts with canopies picking up DOM, which is then exported from the plant in stemflow and throughfall, where stemflow denotes water flowing down the plant stem and throughfall is the water that drips from and through the leaves, branches, and epiphytes of the canopy. As nearly all studies of vegetation-derived DOM to date report DOM derived from tree canopies (tree-DOM), in this chapter we discuss the quality, potential sources, and potential fates of tree-DOM. We then describe and discuss the drivers of variation of quantitative fluxes of tree-DOM and place these quantitative fluxes in biogeochemical and ecological contexts at scales ranging from the individual tree, forest, and watershed to global trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatzoglou JT, Williams AP (2016) Impact of anthropogenic climate change on wildfire across western US forests. Proc Natl Acad Sci 113(42):11770–11775

    Article  Google Scholar 

  • Algeo TJ, Scheckler SE, Maynard JB (2001) Effects of the Middle to Late Devonian spread of vascular land plants on weathering regimes, marine biotas, and global climate. In: Plants invade the land: evolutionary and environmental perspectives. Columbia University Press, New York, pp 213–236

    Google Scholar 

  • Baker E, Hunt GM (1986) Erosion of waxes from leaf surfaces by simulated rain. New Phytol 102(1):161–173

    Article  Google Scholar 

  • Barve N, Martin CE, Peterson AT (2015) Climatic niche and flowering and fruiting phenology of an epiphytic plant. AoB Plants 7

    Google Scholar 

  • Beard KH, Vogt KA, Kulmatiski A (2002) Top-down effects of a terrestrial frog on forest nutrient dynamics. Oecologia 133(4):583–593

    Article  Google Scholar 

  • Beggs KM, Summers RS (2011) Character and chlorine reactivity of dissolved organic matter from a mountain pine beetle impacted watershed. Environ Sci Technol 45(13):5717–5724. https://doi.org/10.1021/es1042436

    Article  Google Scholar 

  • Bischoff S, Schwarz MT, Siemens J, Thieme L, Wilcke W, Michalzik B (2015) Properties of dissolved and total organic matter in throughfall, stemflow and forest floor leachate of central European forests. Biogeosciences 12(9):2695–2706. https://doi.org/10.5194/bg-12-2695-2015

    Article  Google Scholar 

  • Bittar TB, Pound P, Whitetree A, Moore LD, Van Stan JT (2018) Estimation of throughfall and stemflow bacterial flux in a subtropical oak-cedar forest. Geophys Res Lett 45(3):1410–1418. https://doi.org/10.1002/2017gl075827

    Article  Google Scholar 

  • Bittar TB, Vieira AA, Stubbins A, Mopper K (2015) Competition between photochemical and biological degradation of dissolved organic matter from the cyanobacteria Microcystis aeruginosa. Limnol Oceanogr 60(4):1172–1194

    Article  Google Scholar 

  • Campbell J, Bengtson P, Fredeen AL, Coxson DS, Prescott CE (2013) Does exogenous carbon extend the realized niche of canopy lichens? Evidence from sub-boreal forests in British Columbia. Ecology 94(5):1186–1195

    Article  Google Scholar 

  • Cavender‐Bares J, Pahlich A (2009) Molecular, morphological, and ecological niche differentiation of sympatric sister oak species, Quercus virginiana and Q. geminata (Fagaceae). Am J Bot 96(9):1690–1702

    Google Scholar 

  • Chantigny MH (2003) Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 113(3–4):357–380

    Article  Google Scholar 

  • Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS (2015) Seasonal community succession of the phyllosphere microbiome. Mol Plant Microbe Interact 28(3):274–285

    Article  Google Scholar 

  • Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39(21):8142–8149

    Article  Google Scholar 

  • Coxson D, McIntyre D, Vogel H (1992) Pulse release of sugars and polyols from canopy bryophytes in tropical montane rain forest (Guadeloupe, French West Indies). Biotropica 121–133

    Google Scholar 

  • Crutzen PJ (2002) Geology of mankind. Nature 415(6867):23

    Article  Google Scholar 

  • Cuss C, Guéguen C (2013) Distinguishing dissolved organic matter at its origin: size and optical properties of leaf-litter leachates. Chemosphere 92(11):1483–1489

    Article  Google Scholar 

  • Dittmar T, Stubbins A (2014) 12.6—dissolved organic matter in aquatic systems. In: Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 125–156

    Google Scholar 

  • Eckhardt B, Moore T (1990) Controls on dissolved organic carbon concentrations in streams, southern Quebec. Can J Fish Aquat Sci 47(8):1537–1544

    Article  Google Scholar 

  • Fan X, Song J, Pa Peng (2016) Temporal variations of the abundance and optical properties of water soluble Humic-Like Substances (HULIS) in PM2. 5 at Guangzhou, China. Atmos Res 172:8–15

    Article  Google Scholar 

  • Fang YT, Gundersen P, Mo JM, Zhu W (2007) Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution. Biogeosciences 4(6):4135–4171

    Article  Google Scholar 

  • Fellman JB, Hood E, Edwards RT, D’Amore DV (2009) Changes in the concentration, biodegradability, and fluorescent properties of dissolved organic matter during stormflows in coastal temperate watersheds. J Geophys Res Biogeosci 114(G1)

    Google Scholar 

  • Fellman Jason B, Hood Eran, Spencer Robert G M (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnol Oceanogr 55. https://doi.org/10.4319/lo.2010.55.6.2452

  • Fellman JB, Petrone K, Grierson P (2013) Leaf litter age, chemical quality, and photodegradation control the fate of leachate dissolved organic matter in a dryland river. J Arid Environ 89:30–37

    Article  Google Scholar 

  • Food and Agriculture Organization (2016) State of the world’s forests 2016. Forests and agriculture: land-use challenges and opportunities. FAO report

    Google Scholar 

  • Fujii K, Uemura M, Hayakawa C, Funakawa S, Sukartiningsih Kosaki T, Ohta S (2009) Fluxes of dissolved organic carbon in two tropical forest ecosystems of East Kalimantan, Indonesia. Geoderma 152(1–2):127–136. https://doi.org/10.1016/j.geoderma.2009.05.028

    Article  Google Scholar 

  • Gensel PG, Edwards D (2001) Plants invade the land: evolutionary and environmental perspectives. Columbia University Press

    Google Scholar 

  • Gilmore A, Gertner G, Rolfe G (1984) Soil chemical changes associated with roosting birds. Soil Sci 138(2):158–163

    Article  Google Scholar 

  • Goller R, Wilcke W, Fleischbein K, Valarezo C, Zech W (2006) Dissolved nitrogen, phosphorus, and sulfur forms in the ecosystem fluxes of a Montane forest in Ecuador. Biogeochemistry 77(1):57–89. https://doi.org/10.1007/s10533-005-1061-1

    Article  Google Scholar 

  • Gray LJ (1997) Organic matter dynamics in Kings Creek, Konza Frairie, Kansas, USA. J North Am Benthol Soc 16(1):50–54

    Article  Google Scholar 

  • Greb SF, DiMichele WA, Gastaldo RA (2006) Evolution and importance of wetlands in earth history. Spec Pap Geol Soc Am 399:1

    Google Scholar 

  • Greene J, Kalkstein L, Ye H, Smoyer K (1999) Relationships between synoptic climatology and atmospheric pollution at 4 US cities. Theoret Appl Climatol 62(3–4):163–174

    Article  Google Scholar 

  • Guggenberger G, Zech W (1994) Composition and dynamics of dissolved carbohydrates and lignin-degradation products in two coniferous forests, NE Bavaria, Germany. Soil Biol Biochem 26(1):19–27

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova S, Tyukavina A, Thau D, Stehman S, Goetz S, Loveland TR (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853

    Google Scholar 

  • Hansen MC, Stehman SV, Potapov PV (2010) Quantification of global gross forest cover loss. Proc Natl Acad Sci 107(19):8650–8655

    Article  Google Scholar 

  • Hedges JI (2002) Why dissolved organics matter. In: Biogeochemistry of marine dissolved organic matter, pp 1–33

    Google Scholar 

  • Hernes PJ, Bergamaschi BA, Eckard RS, Spencer RG (2009) Fluorescence‐based proxies for lignin in freshwater dissolved organic matter. J Geophys Res Biogeosci 114(G4)

    Google Scholar 

  • Hertkorn N, Ruecker C, Meringer M, Gugisch R, Frommberger M, Perdue E, Witt M, Schmitt-Kopplin P (2007) High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems. Anal Bioanal Chem 389(5):1311–1327

    Article  Google Scholar 

  • Howard DH, VanStan JT, Whitetree A, Zhu L, Stubbins A (2018) Interstorm variability in the biolability of tree-derived dissolved organic matter (Tree-DOM) in throughfall and stemflow. Forests 9(5):236

    Article  Google Scholar 

  • Ide J, Makita N, Jeong S, Yamase K, Ohashi M (2019) The contribution of coniferous canopy to the molecular diversity of dissolved organic matter in rainfall. Water 11(1):167

    Article  Google Scholar 

  • Inamdar S, Finger N, Singh S, Mitchell M, Levia D, Bais H, Scott D, McHale P (2012) Dissolved organic matter (DOM) concentration and quality in a forested mid-Atlantic watershed, USA. Biogeochemistry 108(1–3):55–76. https://doi.org/10.1007/s10533-011-9572-4

    Article  Google Scholar 

  • Jansen B, Kalbitz K, McDowell WH (2014) Dissolved organic matter: linking soils and aquatic systems. Vadose Zone J 13(7):0

    Google Scholar 

  • Jumpponen A, Jones K (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186(2):496–513

    Article  Google Scholar 

  • Kalbitz K, Meyer A, Yang R, Gerstberger P (2007) Response of dissolved organic matter in the forest floor to long-term manipulation of litter and throughfall inputs. Biogeochemistry 86(3):301–318. https://doi.org/10.1007/s10533-007-9161-8

    Article  Google Scholar 

  • Koprivnjak J-F, Moore T (1992) Sources, sinks, and fluxes of dissolved organic carbon in subarctic fen catchments. Arct Alp Res 24(3):204–210

    Article  Google Scholar 

  • Kurz WA, Dymond C, Stinson G, Rampley G, Neilson E, Carroll A, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452(7190):987

    Article  Google Scholar 

  • Lawson ER (1985) Eastern redcedar

    Google Scholar 

  • Le Mellec A, Meesenburg H, Michalzik B (2010) The importance of canopy-derived dissolved and particulate organic matter (DOM and POM)–comparing throughfall solution from broadleaved and coniferous forests. Ann For Sci 67(4):411

    Article  Google Scholar 

  • Levia DF, Van Stan I, John T, Inamdar SP, Jarvis MT, Mitchell MJ, Mage SM, Scheick CE, Mchale PJ (2011) Stemflow and dissolved organic carbon cycling: temporal variability in concentration, flux, and UV-Vis spectral metrics in a temperate broadleaved deciduous forest in the eastern United States. Can J For Res 42(1):207–216

    Article  Google Scholar 

  • Levia DF, Van Stan IIJT, Inamdar SP, Jarvis MT, Mitchell MJ, Mage SM, Scheick CE, McHale PJ (2012) Stemflow and dissolved organic carbon cycling: temporal variability in concentration, flux, and UV-Vis spectral metrics in a temperate broadleaved deciduous forest in the eastern United States. Can J For Res 42(1):207–216. https://doi.org/10.1139/x11-173

    Article  Google Scholar 

  • Mack AL (1995) Phenology of the dominant hardwoods in Castellow Hammock, South Florida

    Google Scholar 

  • Mahendrappa M (1974) Chemical composition of stemflow from some eastern Canadian tree species. Can J For Res 4(1):1–7

    Article  Google Scholar 

  • Maie N, Pisani O, Jaffé R (2008) Mangrove tannins in aquatic ecosystems: Their fate and possible influence on dissolved organic carbon and nitrogen cycling. Limnol Oceanogr 53(1):160–171

    Article  Google Scholar 

  • McDowell WH, Currie WS, Aber JD, Yang Y (1998) Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils. In: Biogeochemical investigations at watershed, landscape, and regional scales. Springer, pp 175–182

    Google Scholar 

  • McDowell WH, Likens GE (1988) Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol Monogr 58(3):177–195

    Article  Google Scholar 

  • Michalzik B, Kalbitz K, Park J-H, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen–a synthesis for temperate forests. Biogeochemistry 52(2):173–205

    Article  Google Scholar 

  • Moore T (2003) Dissolved organic carbon in a northern boreal landscape. Glob Biogeochem Cycles 17(4)

    Google Scholar 

  • Mopper K, Kieber DJ, Stubbins A (2015) Marine photochemistry of organic matter: processes and impacts. In: Biogeochemistry of marine dissolved organic matter. Elsevier, pp 389–450

    Google Scholar 

  • Mopper K, Stubbins A, Ritchie JD, Bialk HM, Hatcher PG (2007) Advanced instrumental approaches for characterization of marine dissolved organic matter: extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy. Chem Rev 107(2):419–442

    Article  Google Scholar 

  • Mopper S, Simberloff D (1995) Differential herbivory in an oak population: the role of plant phenology and insect performance. Ecology 76(4):1233–1241

    Article  Google Scholar 

  • Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, Crump BC, Dorrestein PC, Dyhrman ST, Hess NJ (2016) Deciphering ocean carbon in a changing world. Proc Natl Acad Sci 113(12):3143–3151

    Article  Google Scholar 

  • Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4(1):29–48

    Article  Google Scholar 

  • Ohno T, Bro R (2006) Dissolved organic matter characterization using multiway spectral decomposition of fluorescence landscapes. Soil Sci Soc Am J 70(6):2028–2037

    Article  Google Scholar 

  • Park J-H, Matzner E (2003) Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux. Biogeochemistry 66(3):265–286. https://doi.org/10.1023/B:BIOG.0000005341.19412.7b

    Article  Google Scholar 

  • Porada P, Van Stan JT, Kleidon A (2018) Significant contribution of non-vascular vegetation to global rainfall interception. Nat Geosci 11(8):563

    Article  Google Scholar 

  • Prahl F, Ertel J, Goni M, Sparrow M, Eversmeyer B (1994) Terrestrial organic carbon contributions to sediments on the Washington margin. Geochim et Cosmochim Acta 58(14):3035–3048

    Article  Google Scholar 

  • Qualls RG, Haines BL (1992) Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci Soc Am J 56(2):578–586

    Article  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44(2):81–99

    Article  Google Scholar 

  • Scharlemann JP, Tanner EV, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management 5(1):81–91

    Article  Google Scholar 

  • Schlesinger WH, Bernhardt ES (2013) Biogeochemistry: an analysis of global change. Academic press

    Google Scholar 

  • Schrumpf M, Zech W, Lehmann J, Lyaruu HVC (2006) TOC, TON, TOS and TOP in rainfall, throughfall, litter percolate and soil solution of a Montane rainforest succession at Mt. Kilimanjaro, Tanzania. Biogeochemistry 78(3):361–387. https://doi.org/10.1007/s10533-005-4428-4

  • Sipler RE, Bronk DA (2015) Dynamics of dissolved organic nitrogen. In: Biogeochemistry of marine dissolved organic matter. Elsevier, pp 127–232

    Google Scholar 

  • Spencer RG, Mann PJ, Dittmar T, Eglinton TI, McIntyre C, Holmes RM, Zimov N, Stubbins A (2015) Detecting the signature of permafrost thaw in Arctic rivers. Geophys Res Lett 42(8):2830–2835

    Article  Google Scholar 

  • Spencer RGM, Butler KD, Aiken GR (2012) Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. J Geophys Res Biogeosci 117(G3):n/a–n/a. https://doi.org/10.1029/2011jg001928

  • Stadler B, Michalzik B (1998) Aphid infested Norway spruce are” hot spots” in throughfall carbon chemistry in coniferous forests. Can J For Res 28(11):1717–1722

    Article  Google Scholar 

  • Stein WE, Mannolini F, Hernick LV, Landing E, Berry CM (2007) Giant cladoxylopsid trees resolve the enigma of the Earth’s earliest forest stumps at Gilboa. Nature 446(7138):904

    Article  Google Scholar 

  • Stiling PD (1996) Ecology: theories and applications

    Google Scholar 

  • Stubbins A, Silva LM, Dittmar T, Van Stan JT (2017) Molecular and optical properties of tree-derived dissolved organic matter in throughfall and stemflow from live oaks and eastern red cedar. Front Earth Sci 5

    Google Scholar 

  • Textor SR, Guillemette F, Zito PA, Spencer RG (2018) An assessment of dissolved organic carbon biodegradability and priming in blackwater systems. J Geophys Res Biogeosci 123(9):2998–3015

    Article  Google Scholar 

  • Tobón C, Sevink J, Verstraten JM (2004) Solute fluxes in throughfall and stemflow in four forest ecosystems in northwest Amazonia. Biogeochemistry 70(1):1–25

    Article  Google Scholar 

  • Van Stan JT, 2nd, Pypker TG (2015) A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Sci Total Environ 536:813–824

    Google Scholar 

  • Van Stan JT, Stubbins A (2018) Tree-DOM: Dissolved organic matter in throughfall and stemflow. Limnol Oceanogr Lett. https://doi.org/10.1002/lol2.10059

    Article  Google Scholar 

  • Van Stan JT, Stubbins A, Bittar T, Reichard JS, Wright KA, Jenkins RB (2015) Tillandsia usneoides(L.) L. (Spanish moss) water storage and leachate characteristics from two maritime oak forest settings. Ecohydrology 8(6):988–1004. https://doi.org/10.1002/eco.1549

  • Van Stan JT, Wagner S, Guillemette F, Whitetree A, Lewis J, Silva L, Stubbins A (2017) Temporal dynamics in the concentration, flux, and optical properties of tree-derived dissolved organic matter in an epiphyte-laden oak-cedar forest. J Geophys Res Biogeosci 122(11):2982–2997. https://doi.org/10.1002/2017jg004111

    Article  Google Scholar 

  • Vernadsky W (1945) The biosphere and the noösphere. Am Sci 33(1):xxii–12

    Google Scholar 

  • Wagner S, Jaffé R, Stubbins A (2018) Dissolved black carbon in aquatic ecosystems. Limnol Oceanogr Lett 3(3):168–185

    Article  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37(20):4702–4708

    Article  Google Scholar 

  • Wickland KP, Neff JC, Aiken GR (2007) Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability. Ecosystems 10(8):1323–1340

    Article  Google Scholar 

  • Willey JD, Kieber RJ, Eyman MS, Avery GB (2000) Rainwater dissolved organic carbon: concentrations and global flux. Glob Biogeochem Cycles 14(1):139–148. https://doi.org/10.1029/1999gb900036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aron Stubbins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stubbins, A., Guillemette, F., Van Stan II, J.T. (2020). Throughfall and Stemflow: The Crowning Headwaters of the Aquatic Carbon Cycle . In: Van Stan, II, J., Gutmann, E., Friesen, J. (eds) Precipitation Partitioning by Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-29702-2_8

Download citation

Publish with us

Policies and ethics