Skip to main content

Storage and Routing of Precipitation Through Canopies

  • Chapter
  • First Online:
Precipitation Partitioning by Vegetation

Abstract

Water storage on tree crowns, trunks, the understory, and litter is, in many respects, one of the simplest water balance components of vegetated ecosystems, but one that is rarely parameterized in detail. Interception processes are often analogized and parameterized as the dynamic (filling and emptying) of static reservoirs, but canopy storage reservoirs and dynamics are more complex, and hence are not fully represented in most ecohydrological models. Each reservoir is itself dynamic in its spatial extent, temporal persistence, and interconnection to other reservoirs throughout the canopy space. Total water storage in the canopy depends in part on how much surface area is affected by water flowing along, and drops among, vegetative surfaces. These flow pathways and their connectivity to other canopy reservoirs also determine drainage rate, i.e., flow to stems and drip from all surfaces as throughfall to the understory or litter. Traversing the canopy in this way could take rainwater ~10−2 to 102 h (and potentially 103 h for frozen precipitation), depending on intrinsic characteristics of canopy surfaces and extrinsic meteorological factors. The aim of this chapter is therefore to describe how precipitation storage in vegetated ecosystems is measured, the major water storage reservoirs, and intrinsic and extrinsic factors affecting these reservoirs; and discuss the extent and limitations of our current knowledge about the distribution network between reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriaenssens S, Staelens J, Wuyts K, de Schrijver A, Van Wittenberghe S, Wuytack T, Kardel F, Verheyen K, Samson R, Boeckx P (2011) Foliar nitrogen uptake from wet deposition and the relation with leaf wettability and water storage capacity. Water Air Soil Pollut 219(1–4):43–57. https://doi.org/10.1007/s11270-010-0682-8

    Article  Google Scholar 

  • Allen ST, Brooks JR, Keim RF, Bond BJ, McDonnell JJ (2014) The role of pre-event canopy storage in throughfall and stemflow by using isotopic tracers. Ecohydrology 7(2):858–868

    Article  Google Scholar 

  • Allen ST, Keim RF, Barnard HR, McDonnell JJ, Renée Brooks J (2017) The role of stable isotopes in understanding rainfall interception processes: a review. Wiley Interdiscip Rev Water 4(1):e1187

    Article  Google Scholar 

  • André F, Jonard M, Ponette Q (2008) Precipitation water storage capacity in a temperate mixed oak-beech canopy. Hydrol Process 22(20):4130–4141. https://doi.org/10.1002/hyp.7013

    Article  Google Scholar 

  • Aryal B, Neuner G (2010) Leaf wettability decreases along an extreme altitudinal gradient. Oecologia 162(1):1

    Article  Google Scholar 

  • Atanassova V (2019) Tree bark of Platanus x hispanica, Burgas Sea Garden. Wikimedia Commons. commons.wikimedia.org

  • Baker E, Hunt GM (1986) Erosion of waxes from leaf surfaces by simulated rain. New Phytol 102(1):161–173

    Article  Google Scholar 

  • Berndt H, Fowler WB (1969) Rime and hoarfrost in upper-slope forests of eastern Washington. J For 67(2):92–95

    Google Scholar 

  • Berry ZC, Hughes NM, Smith WK (2014) Cloud immersion: an important water source for spruce and fir saplings in the southern Appalachian Mountains. Oecologia 174(2):319–326

    Article  Google Scholar 

  • Berry ZC, Emery NC, Gotsch SG, Goldsmith GR (2019) Foliar water uptake: processes, pathways, and integration into plant water budgets. Plant, Cell Environ 42(2):410–423

    Article  Google Scholar 

  • Black PE (1957) Interception in a Hardwood Stand: the loss of rainfall due to a cove-hardwood forest type in the Southern Appalachian Mountains: a thesis submitted in partial fulfillment… for the Degree of Master of Forestry. University of Michigan

    Google Scholar 

  • Błońska E, Klamerus-Iwan A, Łagan S, Lasota J (2018) Changes to the water repellency and storage of different species of deadwood based on decomposition rate in a temperate climate. Ecohydrology 11(8):e2023

    Article  Google Scholar 

  • Bouten W, Swart P, De Water E (1991) Microwave transmission, a new tool in forest hydrological research. J Hydrol 124(1–2):119–130

    Article  Google Scholar 

  • Breshears DD, McDowell NG, Goddard KL, Dayem KE, Martens SN, Meyer CW, Brown KM (2008) Foliar absorption of intercepted rainfall improves woody plant water status most during drought. Ecology 89(1):41–47

    Article  Google Scholar 

  • Breuer L, Eckhardt K, Frede H-G (2013) Plant parameter values for models in temperate climates. Ecol Model 169:237–293

    Article  Google Scholar 

  • Brewer CA, Nunez CI (2007) Patterns of leaf wettability along an extreme moisture gradient in western Patagonia, Argentina. Int J Plant Sci 168(5):555–562

    Article  Google Scholar 

  • Bründl M, Bartelt P, Schneebeli M, Flühler H (1999) Measuring branch deflection of spruce branches caused by intercepted snow load. Hydrol Process 13(14–15):2357–2369

    Article  Google Scholar 

  • Bründl M, Schneebeli M (1995) Observation of snow interception in spruce crowns. Int Arch Photogramm Remote Sens IAPRS 30(Part 5W1):312–317

    Google Scholar 

  • Bühler A (1892) Die Niederschläge im Walde. Mitt d Schweiz Centn Anst f forstl Versuchswesen S:127–160

    Google Scholar 

  • Burkhardt J, Hunsche M (2013) “Breath figures” on leaf surfaces—formation and effects of microscopic leaf wetness. Front Plant Sci 4:422

    Article  Google Scholar 

  • Calder I, Wright I (1986) Gamma ray attenuation studies of interception from Sitka spruce: some evidence for an additional transport mechanism. Water Resour Res 22(3):409–417

    Article  Google Scholar 

  • Calder IR, Hall RL, Rosier PT, Bastable HG, Prasanna K (1996) Dependence of rainfall interception on drop size: 2. Experimental determination of the wetting functions and two-layer stochastic model parameters for five tropical tree species. J Hydrol 185 (1–4):379–388

    Google Scholar 

  • Carlyle-Moses DE, Schooling JT (2015) Tree traits and meteorological factors influencing the initiation and rate of stemflow from isolated deciduous trees. Hydrol Process 29(18):4083–4099

    Article  Google Scholar 

  • Cheng YT, Rodak D, Wong C, Hayden C (2006) Effects of micro-and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology 17(5):1359

    Article  Google Scholar 

  • Crockford RH, Richardson DP (2000) Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrol Process 14(16–17):2903–2920

    Article  Google Scholar 

  • Crouse RP, Corbett ES, Seegrist DW (1966) Methods of measuring and analyzing rainfall interception by grass. Hydrol Sci J 11(2):110–120

    Google Scholar 

  • Deguchi A, Hattori S, Park H-T (2006) The influence of seasonal changes in canopy structure on interception loss: application of the revised Gash model. J Hydrol 318(1–4):80–102

    Article  Google Scholar 

  • Delso D (2013) Old Man Cactus (Cephalocereus senilis), Munich Botanical Garden, Germany. Wikimedia Commons. commons.wikimedia.org

  • Dias JL, Sellers BA, Ferrell JA, Silveira ML, Vendramini J (2018) Herbage responses to Dogfennel cover and limited nitrogen fertilization in Bahiagrass Pastures. Agron J 110(6):2507–2512

    Article  Google Scholar 

  • Dolman AJ, Gregory D (1992) The parametrization of rainfall interception in GCMs. Q J R Meteorol Soc 118(505):455–467

    Article  Google Scholar 

  • Dove H (1855) Ueber die Vertheilung der Regen in der gemässigten Zone. Ann Phys 170(1):42–59

    Article  Google Scholar 

  • Dunkerley DL (2009) Evaporation of impact water droplets in interception processes: historical precedence of the hypothesis and a brief literature overview. J Hydrol 376(3–4):599–604

    Article  Google Scholar 

  • Dunkerley DL (2014) Stemflow on the woody parts of plants: dependence on rainfall intensity and event profile from laboratory simulations. Hydrol Process 28(22):5469–5482

    Article  Google Scholar 

  • Dzierżanowski K, Popek R, Gawrońska H, Sæbø A, Gawroński SW (2011) Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int J Phytorem 13(10):1037–1046

    Article  Google Scholar 

  • Earles J, Sperling O, Silva LC, McElrone AJ, Brodersen CR, North MP, Zwieniecki MA (2016) Bark water uptake promotes localized hydraulic recovery in coastal redwood crown. Plant, Cell Environ 39(2):320–328

    Article  Google Scholar 

  • Ebermayer E (1873a) Physical effects of forests on air and soil and their climatological and hygienic importance. Aschaffenburg, Germany, Krebs

    Google Scholar 

  • Ebermayer EWF (1873b) Die physikalischen einwirkungen des waldes auf luft und boden und seine klimatologische und hygienische bedeutung: begründet durch die beobachtungen der forst.meteorolog. stationen im königreich Bayern, vol 1. C. Krebs

    Google Scholar 

  • Fan J, Oestergaard KT, Guyot A, Jensen DG, Lockington DA (2015) Spatial variability of throughfall and stemflow in an exotic pine plantation of subtropical coastal Australia. Hydrol Process 29(5):793–804

    Article  Google Scholar 

  • Fernández V, Eichert T (2009) Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Crit Rev Plant Sci 28(1–2):36–68

    Article  Google Scholar 

  • Fernández V, Sancho-Knapik D, Guzmán P, Peguero-Pina JJ, Gil L, Karabourniotis G, Khayet M, Fasseas C, Heredia-Guerrero JA, Heredia A (2014) Wettability, polarity and water absorption of Quercus ilex leaves: effect of leaf side and age. Plant Physiol https://doi.org/10.1104/pp.114.242040

  • Floyd W, Weiler M (2008) Measuring snow accumulation and ablation dynamics during rain-on-snow events: innovative measurement techniques. Hydrol Process Int J 22(24):4805–4812

    Article  Google Scholar 

  • Fowler W (1970) Monitoring rime accumulation by radioactive attenuation. J Phys E: Sci Instrum 3(9):735

    Article  Google Scholar 

  • Franks A, Bergstrom D (2000) Corticolous bryophytes in microphyll fern forests of south-east Queensland: distribution on Antarctic beech (Nothofagus moorei). Austral Ecol 25(4):386–393

    Article  Google Scholar 

  • Franz TE, Zreda M, Rosolem R, Hornbuckle BK, Irvin SL, Adams H, Kolb TE, Zweck C, Shuttleworth WJ (2013) Ecosystem-scale measurements of biomass water using cosmic ray neutrons. Geophys Res Lett 40(15):3929–3933

    Article  Google Scholar 

  • Friesen J, Lundquist J, Van Stan JT (2015) Evolution of forest precipitation water storage measurement methods. Hydrol Process 29(11):2504–2520. https://doi.org/10.1002/hyp.10376

    Article  Google Scholar 

  • Friesen J, van Beek C, Selker J, Savenije HHG, van de Giesen N (2008) Tree rainfall interception measured by stem compression. Water Resour Res 44(4). https://doi.org/10.1029/2008wr007074

  • Fritschen LJ, Cox L, Kinerson R (1973) A 28-meter Douglas-fir in a weighing lysimeter. For Sci 19(4):256–261

    Google Scholar 

  • Fritzsche W (1983) Measuring snow water equivalent by cosmic radiation. Ann Glaciol 4:298–298

    Article  Google Scholar 

  • Garvelmann J, Pohl S, Weiler M (2013) From observation to the quantification of snow processes with a time-lapse camera network. Hydrol Earth Syst Sci 17(4):1415

    Article  Google Scholar 

  • Gerrits A, Savenije H (2011) Forest floor interception. In: Forest hydrology and biogeochemistry. Springer, pp 445–454

    Google Scholar 

  • Gerrits A, Savenije H, Hoffmann L, Pfister L (2007) New technique to measure forest floor interception–an application in a beech forest in Luxembourg. Hydrol Earth Syst Sci 11(2):695–701

    Article  Google Scholar 

  • Gerrits A, Savenije H, Veling E, Pfister L (2009) Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model. Water Resour Res 45(4)

    Google Scholar 

  • Gerrits AMJ, Pfister L, Savenije HHG (2010) Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol Process 24(21):3011–3025. https://doi.org/10.1002/hyp.7712

    Article  Google Scholar 

  • Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004) Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. J Hydrol 286(1–4):249–270

    Article  Google Scholar 

  • Gordon D, Coenders-Gerrits A, Van Stan II JT (2018) Net rainfall partitioning by herbaceous plants in a Pinus palustris understory. In: American geophysical union fall meeting, Washington, D.C.

    Google Scholar 

  • Guevara-Escobar A, Gonzalez-Sosa E, Ramos-Salinas M, Hernandez-Delgado G (2007) Experimental analysis of drainage and water storage of litter layers. Hydrol Earth Syst Sci 11(5):1703–1716

    Article  Google Scholar 

  • Gutezeit B (2006) Storage of intercepted water on vegetable plants measured by gamma scanning technique. Eur J Hortic Sci 71(1):30

    Google Scholar 

  • Hancock N, Crowther J (1979) A technique for the direct measurement of water storage on a forest canopy. J Hydrol 41(1–2):105–122

    Article  Google Scholar 

  • Hedstrom NR, Pomeroy JW (1998) Measurements and modelling of snow interception in the boreal forest. Hydrol Process 12:1611–1625

    Article  Google Scholar 

  • Helliker BR, Griffiths H (2007) Toward a plant-based proxy for the isotope ratio of atmospheric water vapor. Glob Change Biol 13(4):723–733

    Article  Google Scholar 

  • Helvey J, Patric J (1965) Canopy and litter interception of rainfall by hardwoods of eastern United States. Water Resour Res 1(2):193–206

    Article  Google Scholar 

  • Herwitz SR (1985) Interception storage capacities of tropical rainforest canopy trees. J Hydrol 77(1–4):237–252

    Article  Google Scholar 

  • Herwitz SR, Slye RE (1995) Three-dimensional modeling of canopy tree interception of wind-driven rainfall. J Hydrol 168(1–4):205–226

    Article  Google Scholar 

  • Holder CD (2011) The relationship between leaf water repellency and leaf traits in three distinct biogeographical regions. Plant Ecol 212(11):1913

    Article  Google Scholar 

  • Holder CD (2013) Effects of leaf hydrophobicity and water droplet retention on canopy storage capacity. Ecohydrology 6(3):483–490. https://doi.org/10.1002/eco.1278

    Article  Google Scholar 

  • Holder CD, Gibbes C (2017) Influence of leaf and canopy characteristics on rainfall interception and urban hydrology. Hydrol Sci J 62(2):182–190. https://doi.org/10.1080/02626667.2016.1217414

    Article  Google Scholar 

  • Hölscher D, Köhler L, van Dijk AIJM, Bruijnzeel LA (2004) The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. J Hydrol 292(1–4):308–322. https://doi.org/10.1016/j.jhydrol.2004.01.015

    Article  Google Scholar 

  • Hoover MD, Leaf CF (1967) Process and significance of interception in Colorado subalpine forest. In: Sopper WE, Lull HW (eds) International symposium on forest hydrology. Pergamon Press, New York, pp 213–224

    Google Scholar 

  • Hoppe E (1896) Regenmessung unter Baumkronen, von Dr. Eduard Hoppe. W. Frick

    Google Scholar 

  • Horton RE (1919) Rainfall interception. Mon Weather Rev 47(9):603–623

    Article  Google Scholar 

  • Huang YS, Chen SS, Lin TP (2005) Continuous monitoring of water loading of trees and canopy rainfall interception using the strain gauge method. J Hydrol 311(1–4):1–7. https://doi.org/10.1016/j.jhydrol.2004.08.036

    Article  Google Scholar 

  • Hutchings N, Milne R, Crowther J (1988) Canopy storage capacity and its vertical distribution in a Sitka spruce canopy. J Hydrol 104(1–4):161–171

    Article  Google Scholar 

  • Ilek A, Kucza J, Morkisz K (2017) Hygroscopicity of the bark of selected forest tree species. iForest—Biogeosci For 10(1):220–226. https://doi.org/10.3832/ifor1979-009

  • Jacobs JM, Work TT (2012) Linking deadwood-associated beetles and fungi with wood decomposition rates in managed black spruce forests. Can J For Res 42(8):1477–1490

    Article  Google Scholar 

  • Jarvis A (2000) Measuring and modelling the impact of land-use change in tropical hillsides: The role of cloud interception to epiphytes. Adv Environ Model Monit 1(1):118–148

    Google Scholar 

  • Keim RF, Link TE (2018) Linked spatial variability of throughfall amount and intensity during rainfall in a coniferous forest. Agric For Meteorol 248:15–21. https://doi.org/10.1016/j.agrformet.2017.09.006

    Article  Google Scholar 

  • Keim RF, Skaugset AE (2004) A linear system model of dynamic throughfall rates beneath forest canopies. Water Resour Res 40(5). https://doi.org/10.1029/2003wr002875

  • Keim RF, Skaugset AE, Weiler M (2005) Temporal persistence of spatial patterns in throughfall. J Hydrol 314(1–4):263–274. https://doi.org/10.1016/j.jhydrol.2005.03.021

    Article  Google Scholar 

  • Keim RF, Skaugset AE, Weiler M (2006a) Storage of water on vegetation under simulated rainfall of varying intensity. Adv Water Resour 29(7):974–986. https://doi.org/10.1016/j.advwatres.2005.07.017

    Article  Google Scholar 

  • Keim RF, Tromp-van Meerveld HJ, McDonnell JJ (2006b) A virtual experiment on the effects of evaporation and intensity smoothing by canopy interception on subsurface stormflow generation. J Hydrol 327(3–4):352–364. https://doi.org/10.1016/j.jhydrol.2005.11.024

    Article  Google Scholar 

  • Kimmins JP (1973) Some statistical aspects of sampling throughfall precipitation in nutrient cycling studies in British Columbian coastal forests. Ecology 54(5):1008–1019

    Article  Google Scholar 

  • Kinar NJ, Pomeroy JW (2015) Measurement of the physical properties of the snowpack. Rev Geophys 53:481–544

    Article  Google Scholar 

  • Kiss L, Russell J, Szentiványi O, Xu X, Jeffries P (2004) Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Sci Tech 14(7):635–651

    Article  Google Scholar 

  • Klaassen W, Bosveld F, De Water E (1998) Water storage and evaporation as constituents of rainfall interception. J Hydrol 212:36–50

    Article  Google Scholar 

  • Klamerus-Iwan A, Błońska E (2018) Canopy storage capacity and wettability of leaves and needles: the effect of water temperature changes. J Hydrol 559:534–540

    Article  Google Scholar 

  • Klamerus-Iwan A, Błońska E, Lasota J, Waligórski P, Kalandyk A (2018a) Seasonal variability of leaf water capacity and wettability under the influence of pollution in different city zones. Atmos Pollut Res 9(3):455–463

    Article  Google Scholar 

  • Klamerus-Iwan A, Gloor E, Sadowska-Rociek A, Błońska E, Lasota J, Łagan S (2018b) Linking the contents of hydrophobic PAHs with the canopy water storage capacity of coniferous trees. Environ Pollut 242:1176–1184

    Article  Google Scholar 

  • Klamerus-Iwan A, Witek W (2018) Variability in the wettability and water storage capacity of common oak leaves (Quercus robur L.). Water 10(6):695

    Google Scholar 

  • Kobayashi D (1987) Snow accumulation on a narrow board. Cold Reg Sci Technol 13(3):239–245

    Article  Google Scholar 

  • Koch K, Barthlott W (2009) Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philos Trans R Soc Lond A: Math Phys Eng Sci 367(1893):1487–1509

    Article  Google Scholar 

  • Kranner I, Beckett R, Hochman A, Nash TH (2008) Desiccation-tolerance in lichens: a review. The Bryologist 111(4):576–593. https://doi.org/10.1639/0007-2745-111.4.576

    Article  Google Scholar 

  • Krutzsch H (1863) Über die zu forstlichen Zwecken in Sachsen eingerichteten meteorologischen Stationen. Tharandter Forstl Jahrb 15:72–104

    Google Scholar 

  • Legates DR, Levia DF, Van Stan JT, Velasco Herrera VM (2013) Using wavelet analysis to examine bark microrelief. Trees 28(2):413–425. https://doi.org/10.1007/s00468-013-0959-9

    Article  Google Scholar 

  • Levia DF, Bollinger WC, Hrabik RA, Pogge JT (2004) Water storage capacity of empty fruiting heads of Liquidambar styracifluaL. (sweetgum)/Capacité de stockage d’eau des bourgeons fruitiers vides deLiquidambar styracifluaL. (le copalme d’Amérique). Hydrol Sci J 49(5). https://doi.org/10.1623/hysj.49.5.843.55133

  • Levia DF, Herwitz SR (2002) Winter chemical leaching from deciduous tree branches as a function of branch inclination angle in central Massachusetts. Hydrol Process 16(14):2867–2879. https://doi.org/10.1002/hyp.1077

    Article  Google Scholar 

  • Levia Jr DF, Wubbena NP (2006) Vertical variation of bark water storage capacity of Pinus strobus L. (Eastern white pine) in southern Illinois. Northeast Nat 13 (1):131–137

    Google Scholar 

  • Leyton L, Reynolds ERC, Thompson FB (1967) Rainfall interception in forest and moorland. In: Sopper WE, Lull HW (eds) International symposium on forest hydrology. Pergamon, NY, pp 163–178

    Google Scholar 

  • Liang WL, Kosugi KI, Mizuyama T (2009) Characteristics of stemflow for tall stewartia (Stewartia monadelpha) growing on a hillslope. J Hydrol 378(1–2):168–178

    Article  Google Scholar 

  • Limm EB, Dawson TE (2010) Polystichum munitum (Dryopteridaceae) varies geographically in its capacity to absorb fog water by foliar uptake within the redwood forest ecosystem. Am J Bot 97(7):1121–1128

    Article  Google Scholar 

  • Limm EB, Simonin KA, Bothman AG, Dawson TE (2009) Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161(3):449–459

    Article  Google Scholar 

  • Link TE, Unsworth M, Marks D (2004) The dynamics of rainfall interception by a seasonal temperate rainforest. Agric For Meteorol 124(3–4):171–191. https://doi.org/10.1016/j.agrformet.2004.01.010

    Article  Google Scholar 

  • Liu S (1998) Estimation of rainfall storage capacity in the canopies of cypress wetlands and slash pine uplands in North-Central Florida. J Hydrol 207(1–2):32–41

    Article  Google Scholar 

  • Liyanage K, Khan S, Brooks S, Mortimer PE, Karunarathna SC, Xu J, Hyde KD (2017) Taxonomic revision and phylogenetic analyses of rubber powdery mildew fungi. Microb Pathog 105:185–195

    Article  Google Scholar 

  • Llorens P, Gallart F (2000) A simplified method for forest water storage capacity measurement. J Hydrol 240(1–2):131–144

    Article  Google Scholar 

  • Mahat V, Tarboton DG (2014) Representation of canopy snow interception, unloading and melt in a parsimonious snowmelt model. Hydrol Process 28(26):6320–6336

    Article  Google Scholar 

  • Malhado AC, Malhi Y, Whittaker RJ, Ladle RJ, Ter Steege H, Fabré NN, Phillips O, Laurance WF, Aragao LE, Pitman NC, Ramírez-Angulo H (2012) Drip-tips are associated with intensity of precipitation in the Amazon rain forest. Biotropica 44(6):728–737

    Article  Google Scholar 

  • Martin KA, Van Stan JT, Dickerson-Lange SE, Lutz JA, Berman JW, Gersonde R, Lundquist JD (2013) Development and testing of a snow interceptometer to quantify canopy water storage and interception processes in the rain/snow transition zone of the North Cascades, Washington, USA. Water Resour Res 49(6):3243–3256. https://doi.org/10.1002/wrcr.20271

    Article  Google Scholar 

  • Michel P, Payton IJ, Lee WG, During HJ (2013) Impact of disturbance on above-ground water storage capacity of bryophytes in New Zealand indigenous tussock grassland ecosystems. N Z J Ecol 114–126

    Google Scholar 

  • Miller DH (1964) Interception processes during snowstorms. USDA For Serv Res Pap PSW-18 24

    Google Scholar 

  • Moul ET, Buell MF (1955) Moss cover and rainfall interception in frequently burned sites in the New Jersey pine barrens. Bull Torrey Bot Club 155–162

    Google Scholar 

  • Murray SJ (2014) Trends in 20th century global rainfall interception as simulated by a dynamic global vegetation model: implications for global water resources. Ecohydrology 7(1):102–114. https://doi.org/10.1002/eco.1325

    Article  Google Scholar 

  • Neinhuis C, Barthlott W (1998) Seasonal changes of leaf surface contamination in beech, oak, and ginkgo in relation to leaf micromorphology and wettability. New Phytol 138(1):91–98

    Article  Google Scholar 

  • Ochoa-Sánchez A, Crespo P, Célleri R (2018) Quantification of rainfall interception in the high Andean tussock grasslands. Ecohydrology 11(3):e1946

    Article  Google Scholar 

  • Olszyczka B, Crowther JM (1981) The application of gamma-ray attenuation to the determination of canopy mass and canopy surfacewater storage. J Hydrol 49(3–4):355–368

    Article  Google Scholar 

  • Paletto A, Tosi V (2010) Deadwood density variation with decay class in seven tree species of the Italian Alps. Scand J For Res 25(2):164–173

    Article  Google Scholar 

  • Papesch A (1984) Wind and its effects on (Canterbury) forests

    Google Scholar 

  • Parajka J, Haas P, Kirnbauer R, Jansa J, Blöschl G (2012) Potential of time-lapse photography of snow for hydrological purposes at the small catchment scale. Hydrol Process 26(22):3327–3337

    Article  Google Scholar 

  • Pfister R, Schneebeli M (1999) Snow accumulation on boards of different sizes and shapes. Hydrol Process 13(14–15):2345–2355

    Article  Google Scholar 

  • Pichler V, Homolák M, Skierucha W, Pichlerová M, Ramírez D, Gregor J, Jaloviar P (2012) Variability of moisture in coarse woody debris from several ecologically important tree species of the Temperate Zone of Europe. Ecohydrology 5(4):424–434

    Article  Google Scholar 

  • Pomeroy J, Parviainen J, Hedstrom N, Gray D (1998) Coupled modelling of forest snow interception and sublimation. Hydrol Process 12(15):2317–2337

    Article  Google Scholar 

  • Pomeroy J, Schmidt R (1993) The use of fractal geometry in modelling intercepted snow accumulation and sublimation. In: Proceedings of the Eastern snow conference, pp 1–10

    Google Scholar 

  • Popek R, Gawrońska H, Wrochna M, Gawroński SW, Sæbø A (2013) Particulate matter on foliage of 13 woody species: deposition on surfaces and phytostabilisation in waxes–a 3-year study. Int J Phytorem 15(3):245–256

    Article  Google Scholar 

  • Porada P, Van Stan JT, Kleidon A (2018) Significant contribution of non-vascular vegetation to global rainfall interception. Nat Geosci 11(8):563

    Article  Google Scholar 

  • Porada P, Weber B, Elbert W, Pöschl U, Kleidon A (2013) Estimating global carbon uptake by lichens and bryophytes with a process-based model. Biogeosciences 10(11):6989–7033. https://doi.org/10.5194/bg-10-6989-2013

    Article  Google Scholar 

  • Press MC, Phoenix GK (2005) Impacts of parasitic plants on natural communities. New Phytol 166(3):737–751

    Article  Google Scholar 

  • Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007) Desiccation-tolerance in bryophytes: a review. The Bryologist 110(4):595–621. https://doi.org/10.1639/0007-2745(2007)110%5b595:dibar%5d2.0.co;2

  • PumpkinSky (2017) Pinus taeda (Loblolly Pine) bark at the Colonial Garden at Norfolk Botanical Garden, Norfolk, Virginia. Area shown is about 4–5″ both directions. Focus stacked from 10 images. Wikimedia Commons. commons.wikimedia.org

  • Pypker TG, Levia DF, Staelens J, Van Stan JT (2011) Canopy structure in relation to hydrological and biogeochemical fluxes. In: Forest hydrology and biogeochemistry. Springer, pp 371–388

    Google Scholar 

  • Pypker TG, Unsworth MH, Bond BJ (2006) The role of epiphytes in rainfall interception by forests in the Pacific Northwest. I. Laboratory measurements of water storage. Can J For Res 36(4):809–818. https://doi.org/10.1139/x05-298

  • Raat K, Draaijers G, Schaap M, Tietema A, Verstraten J (2002) Spatial variability of throughfall water and chemistry and forest floor water content in a Douglas fir forest stand. Hydrol Earth Syst Sci Discuss 6(3):363–374

    Article  Google Scholar 

  • Ramsey D (2016a) Photograph of the bark of the American Beechen (Fagus grandilolia en). Photo taken at the Tyler Arboretum where its species was identified. Wikimedia Commons. commons.wikimedia.org

  • Ramsey D (2016b) Photograph of the bark of the Swamp Whiteen (Quercus bicolor en). Photo taken at the Tyler Arboretum where its species was identified. The tree is at least as old as 1873. Wikimedia Commons. commons.wikimedia.org

  • Reid LM, Lewis J (2009) Rates, timing, and mechanisms of rainfall interception loss in a coastal redwood forest. J Hydrol 375(3–4):459–70

    Google Scholar 

  • Rosado BHP, Holder CD (2013) The significance of leaf water repellency in ecohydrological research: a review. Ecohydrology 6(1):150–161. https://doi.org/10.1002/eco.1340

    Article  Google Scholar 

  • Rosier CL, Van Stan JT, Moore LD, Schrom JOS, Wu T, Reichard JS, Kan J (2015) Forest canopy structural controls over throughfall affect soil microbial community structure in an epiphyte-laden maritime oak stand. Ecohydrology 8(8):1459–1470. https://doi.org/10.1002/eco.1595

    Article  Google Scholar 

  • Russell M, Eitel JUH, Maguire AJ, Link TE (in review) Novel laser-based snow interception estimation. Hydrol Process

    Google Scholar 

  • Sadeghi SMM, Van Stan JT, Pypker TG, Tamjidi J, Friesen J, Farahnaklangroudi M (2018) Importance of transitional leaf states in canopy rainfall partitioning dynamics. Eur J For Res 137(1):121–130

    Article  Google Scholar 

  • Sæbø A, Popek R, Nawrot B, Hanslin H, Gawronska H, Gawronski S (2012) Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ 427:347–354

    Article  Google Scholar 

  • Satterlund DR, Haupt HF (1967) Snow catch by contier crowns. Water Resour Res 3(4):1035–1039

    Article  Google Scholar 

  • Satterlund DR, Haupt HF (1970) The disposition of snow caught by conifer crowns. Water Resour Res 6(2):649–652

    Article  Google Scholar 

  • Sato Y, To Kumagai, Kume A, Otsuki K, Ogawa S (2004) Experimental analysis of moisture dynamics of litter layers: the effects of rainfall conditions and leaf shapes. Hydrol Process 18(16):3007–3018. https://doi.org/10.1002/hyp.5746

    Article  Google Scholar 

  • Schmidt G, Zotz G (2001) Ecophysiological consequences of differences in plant size: in situ carbon gain and water relations of the epiphytic bromeliad, Vriesea sanguinolenta. Plant Cell Environ 24(1):101–111

    Article  Google Scholar 

  • Schmidt RA, Gluns DR (1991) Snowfall interception on branches of three conifer species. Can J For Res 21(8):1262–1269

    Article  Google Scholar 

  • Schmidt R, Pomeroy J (1990) Bending of a conifer branch at subfreezing temperatures: implications for snow interception. Can J For Res 20:1250–1253

    Article  Google Scholar 

  • Schmidt RA, Jairell RL, Pomeroy J (1988) Measuring snow interception and loss from an artificial conifer. In: Proceedings of the Western snow conference. Colorado State University, pp 166–169

    Google Scholar 

  • Schneebeli M, Wolf S, Kunert N, Eugster W, Mätzler C (2011) Relating the X-band opacity of a tropical tree canopy to sapflow, rain interception and dew formation. Remote Sens Environ 115(8):2116–2125

    Article  Google Scholar 

  • Selker J, Lane J, Rupp D, Hut R, Abou Najm M, Stewart R, Van De Giesen N, Selker F (2011) The answer is blowing in the wind: Using wind induced resonance of trees to measure time varying canopy mass, including interception. In: AGU fall meeting abstracts

    Google Scholar 

  • Sellers P, Randall D, Collatz G, Berry J, Field C, Dazlich D, Zhang C, Collelo G, Bounoua L (1996) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation. J Clim 9(4):676–705

    Google Scholar 

  • Sexton JM, Harmon ME (2009) Water dynamics in conifer logs in early stages of decay in the Pacific Northwest, USA. Northwest Sci 83(2):131–139

    Article  Google Scholar 

  • Sgrigna G, Baldacchini C, Esposito R, Calandrelli R, Tiwary A, Calfapietra C (2016) Characterization of leaf-level particulate matter for an industrial city using electron microscopy and X-ray microanalysis. Sci Total Environ 548:91–99

    Article  Google Scholar 

  • Shidei T, Takahashi T, Takahashi K, Kataoka K (1952) Study of the fallen snow on the forest trees. Bull Gov For Exp Stn 54:115–164

    Google Scholar 

  • Shinohara Y, Levia DF, Komatsu H, Nogata M, Otsuki K (2015) Comparative modeling of the effects of intensive thinning on canopy interception loss in a Japanese cedar (Cryptomeria japonica D. Don) forest of western Japan. Agric For Meteorol 214:148–156

    Article  Google Scholar 

  • Sioma A, Socha J, Klamerus-Iwan A (2018) A New method for characterizing bark microrelief using 3D vision systems. Forests 9(1):30

    Article  Google Scholar 

  • Stähli M, Jonas T, Gustafsson D (2009) The role of snow interception in winter-time radiation processes of a coniferous sub-alpine forest. Hydrol Process Int J 23(17):2498–2512

    Article  Google Scholar 

  • Starr F, Starr K (2011) Thorns on stem at Polipoli, Maui, Hawaii. Wikimedia Commons. commons.wikimedia.org

  • Starr F, Starr K (2016) Stem with hairs at Hawea PI Olinda, Maui, Hawaii. Wikimedia Commons. commons.wikimedia.org

  • Storck P, Lettenmaier DP, Bolton SM (2002) Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon United States. Water Resour Res 38(11):5

    Article  Google Scholar 

  • Stuart TS (1968) Revival of respiration and photosynthesis in dried leaves of Polypodium polypodioides. Planta 83(2):185–206

    Article  Google Scholar 

  • Suzuki K, Kodama Y, Yamazaki T, Kosugi K, Nakai Y, Baeck J (2008) Snow accumulation on evergreen needle-leaved and deciduous broad-leaved trees. Boreal Environ Res 13(5):403–416

    Google Scholar 

  • Täumer K, Stoffregen H, Wessolek G (2005) Determination of repellency distribution using soil organic matter and water content. Geoderma 125(1–2):107–115

    Article  Google Scholar 

  • Tennyson LC, Ffolliott PF, Thorud DB (1974) Use of time-lapse photography to assess potential interception in Arizona Ponderosa pine 1. JAWRA J Am Water Resour Assoc 10(6):1246–1254

    Article  Google Scholar 

  • Turunen M, Huttunen S (1990) A review of the response of epicuticular wax of conifer needles to air pollution. J Environ Qual 19(1):35–45

    Article  Google Scholar 

  • van Emmerik T, Steele-Dunne S, Gentine P, Oliveira RS, Bittencourt P, Barros F, van de Giesen N (2018) Ideas and perspectives: tree–atmosphere interaction responds to water-related stem variations. Biogeosciences 15(21):6439–6449

    Article  Google Scholar 

  • van Emmerik T, Steele-Dunne S, Hut R, Gentine P, Guerin M, Oliveira RS, Wagner J, Selker J, van de Giesen N (2017) Measuring tree properties and responses using low-cost accelerometers. Sensors (Basel) 17(5). https://doi.org/10.3390/s17051098

  • Van Stan JT, Underwood SJ, Friesen J (2018) Urban forestry: an underutilized tool in water management. In: Friesen J, Rodriguez-Sinobas L (eds) Advanced tools for integrated water resources management. Advances in chemical pollution, environmental management and protection, vol 3. Elsevier, London, United Kingdom, pp 35–62. https://doi.org/10.1016/bs.apmp.2018.04.003

  • Van Stan JT, Pypker TG (2015) A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Sci Total Environ 536:813–824. https://doi.org/10.1016/j.scitotenv.2015.07.134

    Article  Google Scholar 

  • Van Stan JT, Levia DF (2009) Inter- and intraspecific variation of stemflow production from Fagus grandifolia Ehrh. (American beech) and Liriodendron tulipifera L. (yellow poplar) in relation to bark microrelief in the eastern United States. Ecohydrology n/a–n/a. https://doi.org/10.1002/eco.83

  • Van Stan JT, Lewis ES, Hildebrandt A, Rebmann C, Friesen J (2016) Impact of interacting bark structure and rainfall conditions on stemflow variability in a temperate beech-oak forest, central Germany. Hydrol Sci J 61(11):2071–2083. https://doi.org/10.1080/02626667.2015.1083104

    Article  Google Scholar 

  • Van Stan JT, Martin K, Friesen J, Jarvis MT, Lundquist JD, Levia DF (2013) Evaluation of an instrumental method to reduce error in canopy water storage estimates via mechanical displacement. Water Resour Res 49(1):54–63. https://doi.org/10.1029/2012wr012666

    Article  Google Scholar 

  • Van Stan JT, Siegert CM, Levia DF Jr, Scheick CE (2011) Effects of wind-driven rainfall on stemflow generation between codominant tree species with differing crown characteristics. Agric For Meteorol 151(9):1277–1286

    Article  Google Scholar 

  • Van Stan JT, Stubbins A, Bittar T, Reichard JS, Wright KA, Jenkins RB (2015) Tillandsia usneoides(L.) L. (Spanish moss) water storage and leachate characteristics from two maritime oak forest settings. Ecohydrology 8(6):988–1004. https://doi.org/10.1002/eco.1549

  • Van Stan JT, Coenders-Gerrits M, Dibble M, Bogeholz P, Norman Z (2017a) Effects of phenology and meteorological disturbance on litter rainfall interception for a Pinus elliottii stand in the Southeastern United States. Hydrol Process 31(21):3719–3728. https://doi.org/10.1002/hyp.11292

    Article  Google Scholar 

  • Van Stan JT, Wagner S, Guillemette F, Whitetree A, Lewis J, Silva L, Stubbins A (2017b) Temporal dynamics in the concentration, flux, and optical properties of tree-derived dissolved organic matter in an epiphyte-laden oak-cedar forest. J Geophys Res Biogeosci 122(11):2982–2997. https://doi.org/10.1002/2017jg004111

    Article  Google Scholar 

  • Veneklaas EJ, Zagt R, Van Leerdam A, Van Ek R, Broekhoven A, Van Genderen M (1990) Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetatio 89(2):183–192

    Article  Google Scholar 

  • Wallace J, Macfarlane C, McJannet D, Ellis T, Grigg A, Van Dijk A (2013) Evaluation of forest interception estimation in the continental scale Australian water resources assessment-landscape (AWRA-L) model. J Hydrol 499:210–223

    Article  Google Scholar 

  • Walsh R, Voigt P (1977) Vegetation litter: an underestimated variable in hydrology and geomorphology. J Biogeogr 253–274

    Google Scholar 

  • Watanabe S, Ozeki J (1964) Study of fallen snow on forest trees (II). Experiment on the snow crown of the Japanese cedar. Gov For Exp Stn Meguro Tokyo Bull 169:1212

    Google Scholar 

  • Zotz G (2016a) Functional anatomy and morphology. In: Plants on plants–the biology of vascular epiphytes. Springer, pp 67–93

    Google Scholar 

  • Zotz G (2016b) The role of vascular epiphytes in the ecosystem. In: Plants on plants–the biology of vascular epiphytes. Springer, pp 229–243

    Google Scholar 

  • Zotz G, Thomas V (1999) How much water is in the tank? Model calculations for two epiphytic bromeliads. Ann Bot 83(2):183–192

    Article  Google Scholar 

  • Zotz G, Winkler U (2013) Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. Oecologia 171(3):733–741

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Klamerus-Iwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klamerus-Iwan, A., Link, T.E., Keim, R.F., Van Stan II, J.T. (2020). Storage and Routing of Precipitation Through Canopies . In: Van Stan, II, J., Gutmann, E., Friesen, J. (eds) Precipitation Partitioning by Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-29702-2_2

Download citation

Publish with us

Policies and ethics