Skip to main content

Team Optimal Control Problems

  • Chapter
  • First Online:
Neural Approximations for Optimal Control and Decision

Abstract

We consider discrete-time stochastic optimal control problems over a finite number of decision stages in which several controllers share different information and aim at minimizing a common cost functional. This organization can be described within the framework of “team theory.” Unlike the classical optimal control problems, linear-quadratic-Gaussian hypotheses are sufficient neither to obtain an optimal solution in closed-loop form nor to understand whether an optimal solution exists. In order to obtain an optimal solution in closed-loop form, additional suitable assumptions must be introduced on the “information structure” of the team. The “information structure” describes the way in which each controller’s information vector is influenced by the stochastic environment and by the decisions of the other controllers. Dynamic programming cannot be applied unless the information structure takes particular forms. On the contrary, the “extended Ritz method” (ERIM) can be always applied. The ERIM consists in substituting the admissible functions with fixed-structure parametrized functions containing vectors of “free” parameters. The ERIM is tested in two case studies. The former is the well-known Witsenhausen counterexample. The latter is an optimal routing problem in a store-and-forward packet-switching network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aicardi M, Davoli F, Minciardi R, Zoppoli R (1990) Decentralized routing, teams and neural networks in communications. In: Proceedings of the IEEE conference on decision and control, pp 2386–2390

    Google Scholar 

  2. Başar T (2008) Variations on the theme of the Witsenhausen counterexample. In: Proceedings of the IEEE conference on decision and control, pp 161–1619

    Google Scholar 

  3. Başar T, Olsder GJ (1998) Dynamic noncooperative game theory. SIAM Classics Appl Math

    Google Scholar 

  4. Baglietto M, Parisini T, Zoppoli R (2001) Distributed-information neural control: the case of dynamic routing in traffic networks. IEEE Trans. Neural Netw 12:485–502

    Article  Google Scholar 

  5. Baglietto M, Parisini T, Zoppoli R (2001) Numerical solutions to the Witsenhausen counterexample by approximating networks. IEEE Trans Autom Control 46:1471–1477

    Article  MathSciNet  Google Scholar 

  6. Bansal R, Başar T (1987) Stochastic teams with nonclassical information revisited: when is an affine law optimal? IEEE Trans Autom Control 32:554–559

    Article  MathSciNet  Google Scholar 

  7. Deng M, Ho YC (1999) An ordinal optimization approach to optimal control problems. Automatica 35:331–338

    Article  MathSciNet  Google Scholar 

  8. Gallager RG (1977) A minimum delay routing algorithm using distributed computation. IEEE Trans Commun 25:73–85

    Article  MathSciNet  Google Scholar 

  9. Gnecco G, Sanguineti M (2012) New insights into Witsenhausen’s counterexample. Optim Lett 6:1425–1446

    Article  MathSciNet  Google Scholar 

  10. Grover P, Park SY, Sahai A (2013) Approximately optimal solutions to the finite-dimensional Witsenhausen’s counterexample. IEEE Trans Autom Control 58:2189–2204

    Article  MathSciNet  Google Scholar 

  11. Grover P, Sahai A (2008) A vector version of Witsenhausen’s counterexample: a convergence of control, communication and computation. In: Proceedings of the IEEE conference on decision and control, pp 1636–1641

    Google Scholar 

  12. Grover P, Sahai A (2010) Witsenhausen’s counterexample as assisted interference suppression. Int J Syst Control Commun 2:197–237

    Article  Google Scholar 

  13. Ho Y-C, Chang TS (1980) Another look at the nonclassical information structure problem. IEEE Trans Autom Control 25:537–540

    Article  MathSciNet  Google Scholar 

  14. Ho Y-C, Chu KC (1972) Team decision theory and information structures in optimal control problems - Part I. IEEE Trans Autom Control 17:15–22

    Article  Google Scholar 

  15. Ho YC, Chu KC (1973) On the equivalence of information structures in static and dynamic teams. IEEE Trans Autom Control 18(2):187–188

    Article  MathSciNet  Google Scholar 

  16. Ho Y-C, Chu KC (1979) Information structure in dynamic multiperson control problems. Automatica 10:341–351

    Article  Google Scholar 

  17. Iftar A, Davison EJ (1998) A decentralized discrete-time controller for dynamic routing. Int J Control 69:599–632

    Article  MathSciNet  Google Scholar 

  18. Kim KH, Roush FW (1987) Team theory. Ellis Horwood Limited, Halsted Press

    MATH  Google Scholar 

  19. Lee JT, Lau E, Ho Y-C (2001) The Witsenhausen counterexample: a hierarchical search approach for nonconvex optimization problems. IEEE Trans Autom Control 46:382–397

    Article  MathSciNet  Google Scholar 

  20. Li N, Marden JR, Shamma JS (2009) Learning approaches to the Witsenhausen counterexample from a view of potential games. In: Proceedings of the 2009 joint ieee conference on decision and control and chinese control conference, pp 157–162

    Google Scholar 

  21. Mahjan A, Martins NC, Rotkowitz MC, Yüksel S (2012) Information structures in optimal decentralized control. In: Proceedings of the IEEE conference on decision and control, pp 1291–1306

    Google Scholar 

  22. Marschak J (1955) Elements for a theory of teams. Manag Sci 1(2):127–137

    Article  MathSciNet  Google Scholar 

  23. Marschak J, Radner R (1972) Economic theory of teams. Yale University Press

    Google Scholar 

  24. Martins N (2006) Witsenhausen’s counterexample holds in the presence of side information. In: Proceedings of the IEEE conference on decision and control, pp 1111–1116

    Google Scholar 

  25. Mehmetoglu M, Akyol E, Rose K (2014) A deterministic annealing approach to Witsenhausen’s counterexample. In: Proceedings of the 2014 IEEE international symposium on information theory (ISIT), pp 3032–3036

    Google Scholar 

  26. Papadimitriou CH, Tsitsiklis JN (1986) Intractable problems in control theory. SIAM J Control Optim 24:639–654

    Article  MathSciNet  Google Scholar 

  27. Parisini T, Zoppoli R (1993) Team theory and neural networks for dynamic routing in traffic and communication networks. Inf Decis Technol 19:1–18

    MATH  Google Scholar 

  28. Park SY, Grover P, Sahai A (2009) A constant-factor approximately optimal solution to the Witsenhausen counterexample. In: Proceedings of the 2009 Joint IEEE conference on decision and control and chinese control conference, pp 2881–2886

    Google Scholar 

  29. Radner R (1962) Team decision problems. Ann Math. Stat 33:857–881

    MathSciNet  MATH  Google Scholar 

  30. Rotkowitz M (2006) Linear controllers are uniformly optimal for the Witsenhausen counterexample. In: Proceedings of the IEEE conference on decision and control, pp 553–558

    Google Scholar 

  31. Saldi N, Linder T, Yüksel S (2018) Finite Approximations in discrete-time stochastic control. Birkhäuser

    Google Scholar 

  32. Saldi N, Yüksel S, Linder T (2017) Finite model approximations and asymptotic optimality of quantized policies in decentralized stochastic control. IEEE Trans Autom Control 62:2360–2373

    Article  MathSciNet  Google Scholar 

  33. Sandell NR Jr, Athans M (1974) Solution of some nonclassical LQG stochastic decision problems. IEEE Trans Autom Control 19:108–116

    Article  MathSciNet  Google Scholar 

  34. Segall A (1977) The modeling of adaptive routing in data-communication networks. IEEE Trans Commun 25:85–95

    Article  Google Scholar 

  35. Witsenhausen HS (1968) A counterexample in stochastic optimum control. SIAM J Control 6:131–147

    Article  MathSciNet  Google Scholar 

  36. Witsenhausen HS (1988) Equivalent stochastic control problems. Math Control Signals Syst 1:3–11

    Article  MathSciNet  Google Scholar 

  37. Yoshikawa T (1975) Dynamic programming approach to decentralized stochastic control problems. IEEE Trans Autom Control 20:796–797

    Article  MathSciNet  Google Scholar 

  38. Yoshikawa T (1978) Decomposition of dynamic team decision problems. IEEE Trans Autom Control 23:627–632

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Zoppoli .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zoppoli, R., Sanguineti, M., Gnecco, G., Parisini, T. (2020). Team Optimal Control Problems. In: Neural Approximations for Optimal Control and Decision. Communications and Control Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-29693-3_9

Download citation

Publish with us

Policies and ethics