Skip to main content

Plasma Models in Hybrid RANS-LES Simulation for Backward Facing Step Flow Control

  • Chapter
  • First Online:
Advances in Effective Flow Separation Control for Aircraft Drag Reduction

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 52))

  • 669 Accesses

Abstract

This paper presents a study on the effects of a single discharge barrier dielectric barrier device on the periodic components of the turbulent shear layers and the Reynolds stresses. 3D simulations using improved delayed detached eddy simulation, a hybrid RANS/LES technique, has been used for the study. The geometry for the study is taken from the experimental configurations for this case. The case comprises a turbulent flow over a backward facing step (BFS), where separation is induced after the step edge. The results from the simulations are compared to the experimental data with and without control. The active flow control device is a single dielectric barrier discharge, DBD, plasma actuator located upstream of the step. The effects of quasi-steady and unsteady—or pulsated-plasma actuation using two different phenomenological models are studied. The resulting turbulent structures, Reynolds stresses, and velocity profiles are analysed applying two different models to simulate the plasma actuation. The results for quasi-steady plasma mode show good agreement with the available experimental data and a reduction of the reattachment length. Regarding modulated actuation of the DBD plasma device, three dimensional simulations are carried out and the results also show excellent agreement of the overall behaviour flow when compared to the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armaly BF et al (1983) Experimental and theoretical investigation of backward facing step flow. J Fluid Mech 127(473):20

    Google Scholar 

  2. Barri M et al (2010) DNS of backward-facing step flow with fully turbulent inflow. Int J Numer Meth Fluids 64:777–792

    MathSciNet  MATH  Google Scholar 

  3. Benard N, Sujar-Garrido P, Bayoda KD, Bonnet JP, Moreau E (2014) Pulsed dielectric barrier discharge for manipulation of turbulent flow downstream a backward facing step. AIAA paper 2014-1127

    Google Scholar 

  4. Benard N, Braud P, Jolibois J, Moreau E (2008) Airflow reattachment along a NACA 0015 airfoil by a surface dielectric barrier discharge actuator—time-resolved particle image velocimetry investigation. AIAA paper 2008-4202

    Google Scholar 

  5. Benard N, Bonnet JP, Touchard G, Moreau E (2008) Flow control by dielectric barrier discharge actuators–jet mixing enhancement. AIAA J 46(9):2293–2305

    Article  Google Scholar 

  6. Benard, N., Braud, P., Pons, J., Touchard, G., Moreau, E (2007) Quasi-steady and unsteady actuation by surface non-thermal plasma discharge for control of a turbulent round air jet. J Turbulence, Vol. 49

    Google Scholar 

  7. Chiang TP, Sheu TWH (1998) A numerical revisit of backward-facing step flow problem. Phys Fluids 11(4):862–874

    Article  Google Scholar 

  8. Corke TC, Enloe CL, Wilkinson SP (2010) Dielectric barrier discharge plasma actuators for flow control. Ann Rev Fluid Mech 2010(42):505–529

    Article  Google Scholar 

  9. Driver DM, Seegmiller HL (1985) Features of a reattaching turbulent shear layer in divergent channel flow. AIAA J 23:163–171

    Article  Google Scholar 

  10. Enloe CL, McLaughin TE, VanDyken RD, Kachner KD, Jumper EJ, Corke TC (2004) Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology. AIAA J 42(3):589–594

    Article  Google Scholar 

  11. Fadai-Ghotbi A et al (2008) Revisiting URANS computations of the backward-facing step flow using second moment closures

    Google Scholar 

  12. Falco RE (1979) A review of the current state of knowledge of turbulent boundary structure. Summary of the AFOSR/MSU research specialists workshop on coherent structure in turbulent boundary layers, AFOSR-TR-80-0290, 1979

    Google Scholar 

  13. Gregory JW (2007) Force production mechanisms of a dielectric-barrier discharge plasma actuator. AIAA paper 2007-185, 2007

    Google Scholar 

  14. Hoskinson, AR, Hershkowitz, N (2008) Flow measurements and plasma simulations of double and single DBD plasma actuators in quiescent air. In: 46th AIAA aerospace sciences meeting and exhibit, pp 1370, Reno, NV, 2008

    Google Scholar 

  15. Hunt JCR, Wray AA, Moin P (1988) Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88, pp. 193–208

    Google Scholar 

  16. Le H, Moin P, Kim J (1997) Direct numerical simulation of turbulent flow over a backward facing step. J Fluid Mech 330:349–374

    Article  Google Scholar 

  17. Leonov SB, Yarantsev DA (2007) Quasi-DC discharge in high-speed flow for combustion enhancement. ICPIG 15–20, 2007

    Google Scholar 

  18. Lien FS, Leschziner MA (1994) Assessment of the turbulence-transport models including non-linear RNG eddy viscosity formulation and second-moment closure for flow over a BFS

    Google Scholar 

  19. Mertz BE, Corke TC (2011) Single-dielectric barrier discharge plasma actuator modelling and validation. J Fluid Mech 2011(669):557–583

    Article  Google Scholar 

  20. Miles RB (2000) Flow control by energy addition into high-speed air. AIAA 2000-2324, 2000

    Google Scholar 

  21. Opaits DF (2012) Dielectric barrier discharge plasma actuator for flow control. NASA/CR—2012-217655, 2012

    Google Scholar 

  22. Pons J, Moreau E, Touchard G (2005) Asymmetric surface dielectric barrier discharge in air at atmospheric pressure: electrical properties and induced airflow characteristics. J Phys D Appl Phys 38:3635

    Article  Google Scholar 

  23. Riherd M, Roy S, Rizzetta D, Visbal M (2011) Study of transient and unsteady effects of plasma actuation in transitional flow over an SD7003 airfoil. AIAA Paper 2011-1075, 49th AIAA aerospace meeting including the new horizons forum and aerospace exposition, Orlando, Florida, 4–7 Jan 2011

    Google Scholar 

  24. Roth JR (2003) Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects on a one atmosphere uniform glow discharge plasma. Phys Plasmas 10:2117

    Article  Google Scholar 

  25. Roy S, Gaitonde DV (2006) Force interaction of high pressure glow discharge with fluid flow for active separation control. Phys Plasmas 13:023503

    Article  Google Scholar 

  26. Roy S, Singh KP, Gaitonde DV (2007) Air plasma actuators for effective flow control. AIAA paper, 2007-184, 2007

    Google Scholar 

  27. Roy S, Singh KP (2007) Modeling plasma actuators with air chemistry for effective flow control. J Appl Phys 101:123308

    Article  Google Scholar 

  28. Roy S, Wang CC (2009) Bulk flow modification with horseshoe and serpentine plasma actuators. J Phys D: Appl Phys, vol 42

    Google Scholar 

  29. Santhanakrishnan A, Jacob JD (2006) Flow control using plasma actuators and linear/annular plasma synthetic jet actuators. In: 3rd AIAA flow control conference, San Francisco, CA, 2006, p 3033

    Google Scholar 

  30. Singh KP, Roy S (2008) Force approximation for a plasma actuator operating in atmospheric air. J Appl Phys 103:013305

    Article  Google Scholar 

  31. Sujar-Garrido P, Bernard N, Laurentie JC, Bonnet JP, Moreau E (2012) Modifications du tenseur de Reynolds turbulent en aval d’une marche descendante par actionneur plasma. 13ième Congrès Francophone de Techniques Laser, CFTL 2012—ROUEN, 18–21 Sept 2012

    Google Scholar 

  32. Shyy W, Jayaraman B, Andersson A (2002) Modelling of glow discharge-induced fluid dynamics. J Appl Phys 92:6434

    Article  Google Scholar 

  33. Visbal MR, Gaitonde DV, Roy S (2006) Control of transitional and turbulent flows using plasma-based actuators. AIAA Paper 2006-3230, San Francisco, CA, 5–8 June 2006

    Google Scholar 

  34. Wang W (2013) Passive and active flow control studies using hybrid RANS/LES simulations, Thesis (Ph.D.), The University of Sheffield, 2013

    Google Scholar 

Download references

Acknowledgements

This research has been partially funded by the European Commission (EC), though the Framework Programme 7 (FP7) Project #266326 entitled: “Manipulation of Reynolds Stress 382 for Separation Control and Drag Reduction” (MARS). The authors would also like to thank Dr W Wang for her help in running the cases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonzalez, P., Qin, N. (2020). Plasma Models in Hybrid RANS-LES Simulation for Backward Facing Step Flow Control. In: Qin, N., Periaux, J., Bugeda, G. (eds) Advances in Effective Flow Separation Control for Aircraft Drag Reduction. Computational Methods in Applied Sciences, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-29688-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29688-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29687-2

  • Online ISBN: 978-3-030-29688-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics