Skip to main content

Shear Layer and Shedding Modes Excitations of a Backward-Facing Step Flow by Surface Plasma Discharge

  • Chapter
  • First Online:
Advances in Effective Flow Separation Control for Aircraft Drag Reduction

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 52))

  • 699 Accesses

Abstract

The present experimental study interests in determining the influence of a linear plasma actuator (dielectric barrier discharge) on the development of a separated turbulent shear layer. More specifically, the plasma actuator is used to impose periodic perturbations at the step corner of a backward-facing step. Two different modes of excitation are explored. One concerns the shear layer mode of instability, a mode whose amplification leads to a minimization of the recirculation bubble. The present investigation shows how a dielectric barrier discharge plasma actuator can impose periodic perturbations that excite the shear layer mode and result in a strong regularization of the vortex street. The case of excitation at the shedding mode is also experimentally investigated using a DBD actuator. The measurements show the increase in Reynolds stress caused by this excitation as well as the specific growing mechanism of the shear layer. Indeed, phase-averaged flow measurements highlights the difference in the mechanism of development of the shear layer regarding the type of excitation used, the shear layer mode promoting a growing mechanism by fluid entrainment while the shedding mode enhancing the pairing of successive vortical flow structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chun KB, Sung HJ (1996) Control of turbulent separated flow over a backward-facing step by local forcing. Exp Fluids 21:417–426

    Article  Google Scholar 

  2. Hasan MAZ (1992) The flow over a backward-facing step under controlled perturbation: laminar separation. J Fluid Mech 238:73–96

    Article  Google Scholar 

  3. Winant CD, Browand FK (1974) Vortex pairing: the mechanism of turbulent layer growth at moderate Reynolds number. J Fluid Mech 63:237–255

    Article  Google Scholar 

  4. Yoshioka S, Obi S, Masuda S (2001) Organized vortex motion in periodically perturbed turbulent separated flow over a backward-facing step. Int J Heat Fluid Flow 22:301–307

    Article  Google Scholar 

  5. Hudy LM, Naguib AM, Humphreys WM (2003) Wall-pressure-array measurements beneath a separating/reattaching flow region. Phys Fluids 15

    Article  Google Scholar 

  6. Bhattacharjee S, Scheelke B, Troutt TR (1986) Modification of vortex interactions in a reattaching separated flow. AIAA J 24

    Google Scholar 

  7. Gautier N, Aider JL (2015) Frequency-lock reactive control of a separated flow enabled by visual sensors. Exp Fluids 56:1–10

    Article  Google Scholar 

  8. Yoshioka S, Obi S, Masuda S (2001) Turbulence statistics of periodically perturbed separated shear over a backward-facing step. Int J Heat Fluid Flow 22:393–401

    Google Scholar 

  9. Pouryoussefi GS, Mirzaei M, Hajipour M (2014) Experimental study of separation bubble control behind a backward-facing step using plasma actuators. Acta Mech 226:1153–1165

    Article  Google Scholar 

  10. d’Adamo J, Sosa R, Artana G (2014) Active control of a backward facing step flow with plasma actuators. J Fluid Eng 136

    Google Scholar 

  11. Benard N, Sujar-Garrido P, Braud P, Bonnet JP, Moreau E (2016) Control of the coherent structure dynamics downstream of a backward facing step by DBD plasma actuator. Intern J Heat Fluid Flow 57:1–16

    Article  Google Scholar 

  12. Sujar-Garrido P, Benard N, Moreau E, Bonnet JP (2015) Dielectric barrier discharge plasma actuator to control turbulent flow downstream of a backward-facing step. Exp Fluids 56:70

    Google Scholar 

  13. Benard N, Pons-Prats J, Periaux J, Bugeda G, Braud P, Bonnet JP, Moreau E (2016) Turbulent separated shear flow control by surface plasma actuator: experimental optimization by genetic algorithm approach. Exp Fluids 57:1–17

    Article  Google Scholar 

  14. Gautier N, Duriez T, Aider JL, Noack B, Segond M, Abel M (2015) Closed-loop separation control using machine learning. J. Fluid Mech 770:442–457

    Article  Google Scholar 

  15. Ho CM, Huang LS (1982) Subharmonics and vortex merging in mixing layers. J Fluid Mech 119:443–473

    Article  Google Scholar 

  16. Martin RA, Kaul UK (2014) Optimization of perturbation parameters for simulated free shear layer flow. AIAA 2014-2223

    Google Scholar 

  17. Cherry NJ, Hillier R, Latour P (1984) Unsteady measurements in a separated and reattaching flow. J Fluid Mech 44

    Google Scholar 

  18. Driver DM, Seegmiller HL, Marvin JG (1987) Time-dependent behavior of reattaching shear layer. AIAA J 25

    Google Scholar 

  19. Oster D, Wygnanski I (1982) The forced mixing layer between parallel streams. J. Fluid Mechanics 123:91–130

    Article  Google Scholar 

  20. Dandois J, Garnier E, Sagaut P (2007) Numerical simulation of active separation control by a synthetic jet. J Fluid Mech 574:25–58

    Article  Google Scholar 

  21. Mansour NN, Hussain F, Buell C (1988) Subharmonic resonance in a mixing layer. In: Proceedings of the summer program, Center for Turbulent Research

    Google Scholar 

  22. Paschereit CO, Wygnanski I (1991) Instabilities in the axisymmetric jet: subharmonic resonance. In: Unger Y, Branover H (eds) Advances in turbulence studies. Progress in Astronautics and aeronautics. https://doi.org/10.2514/4.866227

  23. Benard N, Moreau E (2014) Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp Fluids 55:1846

    Article  Google Scholar 

  24. Moreau E., 2007, ‘Airflow control by non-thermal plasma actuators,’ J Phys D: Appl Phys 40

    Article  Google Scholar 

  25. Sujar-Garrido P (2014) Active control of the turbulent flow downstream of a backward facing step with dielectric barrier discharge plasma actuators. Ph.D. thesis, University of Poitiers

    Google Scholar 

  26. Aono H, Sekimoto S, Sato M, Yakeno A, Nonomura T, Fujii K (2015) Computational and experimental analysis of flow structures induced by a plasma actuator with burst modulations in quiescent air. Mech Eng J 2

    Google Scholar 

  27. Benard N, Moreau E (2010) Capabilities of the dielectric barrier discharge plasma actuator for multi-frequency excitations. J Phys D Appl Phys 43:145201

    Article  Google Scholar 

  28. Wang J-J, Choi K-S, Feng L-H, Jukes TN (2013) Recent developments in DBD plasma flow control. Prog Aerosp Sci 62:52–78

    Article  Google Scholar 

  29. Reynolds WC, Hussain AKMF (1972) The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J Fluid Mech 54:263–288

    Article  Google Scholar 

  30. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MathSciNet  Google Scholar 

  31. Bonnet JP, Delville J, Glauser MN, Antonia RA, Bisset DK, Cole DR, Fiedler HE, Garem JH, Hilberg D, Jeong J, Kevlahan NKR, Ukeiley LS, Vincendeau E (1998) Collaborative testing of eddy structure identification methods in free turbulent shear flows. Exp Fluids 25:197–225

    Article  Google Scholar 

  32. Hudy LM, Naguib AM, Humphreys WM (2007) Stochastic estimation of a separated-flow field using wall-pressure-array measurements. Phys Fluids 19:024103

    Article  Google Scholar 

  33. Troutt TR, Scheelke B, Norman TR (1984) Organized structures in a reattaching separated flow field. J Fluid Mech 143:413–427

    Article  Google Scholar 

  34. Dejoan A, Leschziner MA (2004) Large eddy simulation of periodically perturbed separated flow over a backward-facing step. Int J Heat Fluid Flow 25:581–592

    Article  Google Scholar 

  35. Hu R, Wang L, Fu S (2016) Investigation of the coherent structures in flow behind a backward-facing step. Int J Numer Meth Heat Fluid Flow 26:1050–1068

    Article  MathSciNet  Google Scholar 

  36. Raman G, Rice EJ (1989) Subharmonic and fundamental high amplitude excitation of an axisymmetric jet. AIAA paper 1989-0993

    Google Scholar 

Download references

Acknowledgements

This work was supported by FP7/2010-2013, MARS (grant agreement no. 266326). A part of the equipment has been funded by the French Government program “Investissements d’Avenir” (LABEX INTERACTIFS, reference ANR-11-LABX-0017-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Benard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benard, N., Sujar-Garrido, P., Bonnet, JP., Moreau, E. (2020). Shear Layer and Shedding Modes Excitations of a Backward-Facing Step Flow by Surface Plasma Discharge. In: Qin, N., Periaux, J., Bugeda, G. (eds) Advances in Effective Flow Separation Control for Aircraft Drag Reduction. Computational Methods in Applied Sciences, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-29688-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29688-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29687-2

  • Online ISBN: 978-3-030-29688-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics