Skip to main content

Geomorphological Changes During Quaternary Period Vis a Vis Role of Climate and Tectonics in Ladakh, Trans-Himalaya

  • Chapter
  • First Online:
Himalayan Weather and Climate and their Impact on the Environment

Abstract

The Ladakh region of NW India is relatively unexplored as compared to its counterpart, the Tibetan Plateau. The region provides ample opportunity to understand the dynamic relationship of the Indian and Eurasian plates, role in governing the global climate and controlling the earth surface temperature by carbon sequestration through weathering of rocks. The differential uplift along several thrust planes and associated climatic conditions are primarily governing the geomorphic evolution of the Ladakh, and amongst several agents of material movement, glaciers are the most effective agent. Overall ten glacial stages (~430–0.4 ka) are recognized from Ladakh. Additionally, the major sources of moisture to the Ladakh region are the Indian Summer monsoon (ISM) and the Central Asian westerlies contributing in subequal amounts. Several morphometric parameters suggest that tectonics is governing the topography. It was most pronounced at 27 ka, 23 ka, 17–19 ka, 11–10 ka and 6 ka along the Karakorum Fault and Indus Suture Zone. The climate studies suggest that during around 35–25 ka, the climate was cold and humid followed by the relatively dry at the Last Glacial Maximum (LGM). A rise in lakes during ~17–5 ka was observed. However, major fluctuations in limiting the lake levels during the Older Dryas, Younger Dryas and 8.2 ka were also noticeable. The variation in different chronological technique, however, poses a serious challenge in determining the geomorphic evolution of the landscape in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad T, Thakur VC, Islam R, Khanna PP, Mukherjee P (1998) Geochemistry and geodynamic implications of magamatic rocks from the Trans-Himalayan arc. Geochem J 32:303–404

    Article  Google Scholar 

  • Aitchison JC, Ali JR, Davis AM (2007) When and where did India and Asia collide? J Geophys Res 112:B05423

    Google Scholar 

  • Ali SN, Juyal N (2013) Chronology of late quaternary glaciations in Indian Himalaya: a critical review. J Geol Soc India 82:628–638

    Article  Google Scholar 

  • Arendt AA, Echelmeyer KA, Harrison WD, Lingle CS, Valentine VB (2002) Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science 297:82–386

    Article  Google Scholar 

  • Baniya C, Solhøy T, Gauslaa Y, Palmer MW (2012) Richness and composition of vascular plants and cryptogams along a high elevational gradient on Buddha Mountain, Central Tibet. Folia Geobot 47:135–151

    Article  Google Scholar 

  • Belnap J, Gillette DA (1998) Vulnerability of desert biological soil crusts to wind erosion: the influence of crust development, soil texture and disturbance. J Arid Environ 39:133–142

    Article  Google Scholar 

  • Benn DI, Owen LA (1998) The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion. J Geol Soc 155:353–363

    Article  Google Scholar 

  • Benn DI, Owen LA, Osmaston HA, Seltzer GO, Porter SC, Mark B (2005) Reconstruction of equilibrium-line altitudes for tropical and sub-tropical glaciers. Quat Int 138-139:8–21

    Article  Google Scholar 

  • Besse J, Courtillot V, Pozzi JP, Westphal M, Zhou YX (1984) Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture. Nature 311:621–626

    Article  Google Scholar 

  • Bhattarai KR, Vetaas OR, Grytnes JA (2004) Fern species richness along a central Himalayan elevational gradient, Nepal. J Biogeogr 31:389–400

    Article  Google Scholar 

  • Blair TC, McPherson JG (1994) Alluvial fan processes and forms. In: Geomorphology of desert environments. Springer, Dordrecht, pp 354–402

    Chapter  Google Scholar 

  • Blöthe JH, Munack H, Korup O, Fülling A, Garzanti E, Resentini A, Kubik PW (2014) Late quaternary valley infill and dissection in the Indus River, western Tibetan plateau margin. Quat Sci Rev 94:102–119

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Koab A (2012) The state and fate of Himalayan glaciers. Science 336:310–314

    Article  Google Scholar 

  • Bookhagen B, Burbank DW (2006) Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys Res Lett 33:1–5

    Google Scholar 

  • Bookhagen B, Burbank DW (2010) Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys Res 115. https://doi.org/10.1029/2009JF001426

  • Bookhagen B, Thiede R, Strecker MR (2005) Abnormal monsoon years and their control on erosion and sediment flux in the high, arid northwestern Himalaya. Earth Planet Sci Lett 231:131–146

    Article  Google Scholar 

  • Bookhagen B, Fleitmann D, Nishiizumi K, Strecker MR, Thiede RC (2006) Holocene Monsoonal dynamics and fluvial terrace formation in the northwest Himalaya, India. Geology 34:601–604

    Article  Google Scholar 

  • Brown ET, Bendick R, Bourles DL, Gaur V, Molnar P, Raisbeck GM, Yiou F (2002) Slip rates of the Karakorum fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines. J Geophy Res Solid Earth 107:ESE 7-1–ESE 7-13

    Article  Google Scholar 

  • Burbank DW, Fort MB (1985) Bedrock control on glacial limits: examples from the Ladakh and Zanskar ranges, north-western Himalaya, India. J Glaciol 31:143–149

    Article  Google Scholar 

  • Burbank DW, Leland J, Fielding E, Anderson RS, Brozovic N, Reid MR, Duncan C (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379(6565):505–510

    Article  Google Scholar 

  • Chevalier ML, Ryerson FJ, Tapponnier P, Finkel RC, Van Der Woerd J, Li H, Liu Q (2005) Slip-rate measurements on the Karakorum fault may imply secular variations in fault motion. Science 307:411–414

    Article  Google Scholar 

  • Clift PD, Giosan L, Biusztajn J, Campbell IH, Allen C, Pringle M, Tabrez AR, Danish M, Rabbani MM, Alizai A, Carter A, Lueckge A (2008) Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology 36:79–82

    Article  Google Scholar 

  • Cohen AS (2003) Paleolimnology: the history and evolution of lake systems. Oxford University Press, New York

    Google Scholar 

  • Corell R, 30 Others (2004) Impacts of a warming Arctic, Arctic Climate Impact Assessment (ACIA report). Cambridge University Press, Cambridge

    Google Scholar 

  • Dalai TK, Bhattacharya SK, Krishnaswamy S (2002a) Stable isotopes in the source waters of the Yamuna and its tributaries: seasonal and altitudinal variations and relation to major cations. Hydrol Process 16:3345–3364

    Article  Google Scholar 

  • Tandup C (2014) Natural environment of Cold Desert Region Zanskar (Ladakh). Int J Sci Res Publ 4(8):1–18

    Google Scholar 

  • Dalai TK, Bhattacharya SK, Krishnaswamy S (2002b) Stable isotopes in the source waters of the Yamuna and its tributaries: seasonal and altitudinal variations and relation to major cations. Hydrol Process 16:3345–3364

    Article  Google Scholar 

  • Damm B (2006) Late quaternary glacier advances in the upper catchment area of the Indus River (Ladakh and Western Tibet). Quat Int 154–155:87–99

    Article  Google Scholar 

  • Demske D, Tarasov PE, Wünnemann B, Riedel F (2009) Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India. Palaeogeogr Palaeoclimatol Palaeoecol 279:172–185

    Article  Google Scholar 

  • Digerfeldt G, Almendinger JE, Bjorck S (1993) Reconstruction of past lake levels and their relation to groundwater hydrology in the Parkers Prairie sandplain, west-central Minnesota. Palaeogeogr Palaeoclimatol Palaeoecol 94:99–118

    Article  Google Scholar 

  • Dimri AP, Yasunari T, Kotlia BS, Mohanty UC, Sikka DR (2016) Indian winter monsoon: present and past. Earth Sci Rev 163:297–322

    Article  Google Scholar 

  • Dixit S, Bera SK (2012) Holocene climatic fluctuations from Lower Brahmaputra flood plain of Assam, northeast India. J Earth Syst Sci 121:135–147

    Article  Google Scholar 

  • Dortch JM, Owen LA, Haneberg WC, Caffee MW, Dietsch C, Kamp U (2009) Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quat Sci Rev 28:1037–1054

    Article  Google Scholar 

  • Dortch JM, Owen LA, Caffee MW (2010) Quaternary glaciation in the Nubra and Shyok valley confluence, northernmost Ladakh, India. Quat Res 74:132–144

    Article  Google Scholar 

  • Dortch JM, Owen LA, Schoenbohm LM, Caffee MW (2011) Asymmetrical erosion and morphological development of the central Ladakh Range, northern India. Geomorphology 135:167–180

    Article  Google Scholar 

  • Dortch JM, Owen LA, Caffee MW (2013) Timing and climatic drivers for glaciation across semi-arid western Himalayan-Tibetan orogen. Quat Sci Rev 78:188–208

    Article  Google Scholar 

  • Dosseto A, Vigier N, Joannes-Boyau R, Moffat I, Singh T, Srivastava P (2015) Rapid response of silicate weathering rates to climate change in the Himalaya. Geochem Perspect Lett 1:10–19

    Article  Google Scholar 

  • Dyurgerov MB, Meier MF (2000) Twentieth century climate change: evidence from small glaciers. Proc Natl Acad Sci U S A 97:1406–1411

    Article  Google Scholar 

  • Eldridge DJ, Tozer ME (1997) Environmental factors relating to the distribution of terricolous bryophytes and lichens in semi-arid eastern Australia. Bryologist 100:28–39

    Article  Google Scholar 

  • Fort M (1983) Geomorphological observations in the Ladakh area (Himalayas): quaternary evolution and present dynamics. In: Gupta VJ (ed) Stratigraphy and structure of Kashmir and Ladakh, Himalaya. Hindustan Publishing, New Delhi, pp 39–58

    Google Scholar 

  • France-Lanord C, Derry LA (1997) Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390:65–67

    Article  Google Scholar 

  • Frank W, Gansser A, Trommsdorff V (1977) Geological observations in the Ladakh area (Himalayas). A preliminary report. Schweiz Mineral Petrogr Mitt 57:89–113

    Google Scholar 

  • Fritz SC (2008) Deciphering climatic history from lake sediments. J Paleolimnol 39:5–16

    Article  Google Scholar 

  • Gaina C, Müller RD, Brown B, Ishihara T (2007) Breakup and early seafloor spreading between India and Antarctica. Geophys J Int 170:151–169

    Article  Google Scholar 

  • Gansser A (1977) The great suture zone between Himalaya and Tibet, a preliminary account, in Himalaya. Sciences de la Terre, Colloque International Du CNRS Paris 268:181–191

    Google Scholar 

  • Gansser A (1964) Geology of the Himalayas. Interscience, London, p 289

    Google Scholar 

  • Garzanti E, Van Haver T (1988) The Indus clastics-forearc basin sedimentation in the Ladakh Himalaya (India). Sediment Geol 59:237–249

    Article  Google Scholar 

  • Gasse F, Van Campo E (1994) Abrupt post-glacial climate events in West Asia and North Africa monsoon domains. Earth Planet Sci Lett 126:435–456

    Article  Google Scholar 

  • Gasse F, Fontes JC, Van Campo E, Wei K (1996) Holocene environmental changes in Bangong Co basin (western Tibet). Part 4: discussions and conclusions. Palaeogeogr Palaeoclimatol Palaeoecol 120:79–82

    Article  Google Scholar 

  • Hales TC, Roering JJ (2005) Climate-controlled variations in scree production, Southern Alps, New Zealand. Geology 33(9):701–704

    Article  Google Scholar 

  • Hazarika D, Paul A, Wadhawan M, Kumar N, Sen K, Pant CC (2017) Seismotectonics of the trans-Himalaya, Eastern Ladakh, India: constraints from moment tensor solutions of local earthquake data. Tectonophysics 698:38–46

    Article  Google Scholar 

  • Hedrick KA, Seong YB, Owen LA, Caffee MW, Dietsch C (2011) Towards defining the transition in style and timing of Quaternary glaciation between the monsoon-influenced Greater Himalaya and the semi-arid Transhimalaya of Northern Indi. Quat Int 236:21–33

    Article  Google Scholar 

  • Heim A, Gansser A (1939) Central Himalaya; geological observations of the Swiss expedition 1936. Schweizer Naturf Ges Denksch 73(1):245

    Google Scholar 

  • Henderson AL, Najman Y, Parrish R, Mark DF, Foster GL (2011) Constraints to the timing of India-Eurasia collision; a re-evaluation of evidence from the Indus Basin sedimentary rocks of the Indus-Tsangpo Suture Zone, Ladakh, India. Earth Sci Rev 106:265–292

    Article  Google Scholar 

  • Herzschuh U, Winter K, Wünnemann B, Li S (2006) A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quat Int 154–155:113–121

    Article  Google Scholar 

  • Hewitt K (1999) Quaternary moraines vs catastrophic rock avalanches in the Karakoram Himalaya, northern Pakistan. Quat Res 51:220–237. https://pubs.usgs.gov/publications/text/himalaya.html

    Article  Google Scholar 

  • Hintersberger E, Thiede RC, Strecker MR (2011) The role of extension during brittle deformation within the NW Indian Himalaya. Tectonics 30:TC3012

    Article  Google Scholar 

  • Hughton JT, Ding Y, Griggs DJ, Noguer M, Van Der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001:the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jain AK (2014) When did India- Asia collide and make the Himalaya? Curr Sci 106:254–266

    Google Scholar 

  • Jain AK, Singh S (2008) Tectonics of the southern Asian Plate margin along the Karakoram Shear Zone: constraints from field observations and U-Pb SHRIMP ages. Tectonophysics 451:186–205

    Article  Google Scholar 

  • John E, Dale MRT (1990) Environmental correlates of species distributions in a saxicolous lichen community. J Veg Sci 1:385–392

    Article  Google Scholar 

  • Juyal N (2014) Ladakh: the high-altitude Indian Cold Desert. In: Kale VS (ed) Landscapes and landforms of India. Springer, Dordrecht, p 271

    Google Scholar 

  • Juyal N, Sundriyal Y, Rana N (2010) Late Quaternary fluvial aggradation and incision in the monsoon-dominated Alaknanda valley, central Himalaya, Uttrakhand, India. J Quat Sci 25:1293–1304

    Article  Google Scholar 

  • Kääb A, Frauenfelder R, Roer I (2007) On the response of rock– glacier creep to surface temperature increase. Glob Planet Chang 56:172–187

    Article  Google Scholar 

  • Karim A, Veizer J (2002) Water balance of Indus river basin and moisture source in the Karakoram and western Himalayas: implications from hydrogen and oxygen isotopes in river water. J Geophys Res 107:ACH 9-1–ACH 9-12

    Article  Google Scholar 

  • Klootwijk CT, Conaghan PJ, Powell CMA (1985) The Himalayan Arc: large-scale continental subduction, oroclinal bending and back-arc spreading. Earth Planet Sci Lett 75:167–183

    Article  Google Scholar 

  • Klootwijk CT, Gee JS, Peirce JW, Smith GM (1992) An early India–Asia contact: Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology 20:395–398

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life – functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Kotlia BS, Shukla UK, Bhalla MS, Mathur PD, Pant CC (1997) Quaternary fluvio-lacustrine deposits of the Lamayuru Basin, Ladakh Himalaya: preliminary multidisciplinary investigations. Geol Mag 134:807–812

    Article  Google Scholar 

  • Koul MN (2017) Impact of climate changes on cryosphere in Suru-Zanskar Valley, Kargil: observed trends, and socio-economic relevance. Transactions 39(1):1–24

    Google Scholar 

  • Kumar J, Rai H, Khare R, Upreti DK, Dhar P, Tayade AB, Chaurasia OP, Srivastava RB (2014) Elevational controls of lichen communities in Zanskar valley, Ladakh, a Trans Himalayan cold desert. Trop Plant Res 1(2):48–54

    Google Scholar 

  • Kumar S, Wesnousky SG, Jayangondaperumal R, Nakata T, Kumahara Y, Singh V (2010) Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India: timing, size, and spatial extent of great earthquakes. J Geophys Res 115:B12422. https://doi.org/10.1029/2009JB006789

    Article  Google Scholar 

  • Kumar A, Srivastava P (2018) Landscape of the Indus River. In: The Indian Rivers: scientific and socio-economic aspects, Springer Hydrogeology. Springer, Singapore, pp 47–60

    Chapter  Google Scholar 

  • Kumar A, Srivastava P (2017) The role of climate and tectonics in aggradation and incision of the Indus River in the Ladakh Himalaya during the late Quaternary. Quat Res 87:363–385

    Article  Google Scholar 

  • Kumar A, Srivastava P, Meena NK (2017) Late Pleistocene aeolian activity in the cold desert of Ladakh: a record from sand ramps. Quat Int 443:13–28

    Article  Google Scholar 

  • Leland J, Reid MR, Burbank DW, Finkel R, Cafee M (1998) Incision and differential bedrock uplift along the Indus River near Nanga Parbat, Pakistan Himalaya, from 10 Be and 26 Al exposure age dating of bedrock straths. Earth Planet Sci Lett 154:93–107

    Article  Google Scholar 

  • Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K, Vernikovsky V (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160:179–210

    Article  Google Scholar 

  • Miashita Y, Yamamoto T (1996) Gondwanaland: its formation, evolution and dispersion. J Afr Earth Sci 23(2)

    Article  Google Scholar 

  • Mischke S, Zhang C (2010) Holocene cold events on the Tibetan Plateau. Glob Planet Chang 72:155–163

    Article  Google Scholar 

  • Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science 189:419–426

    Article  Google Scholar 

  • Molnar P, Burchfiel BC, Ziyun Z, Kuangyi L, Shuji W, Minmin H (1987) The geologic evolution of northern Tibet; results of an expedition to Ulugh Muztagh. Science 235:299–305

    Google Scholar 

  • Nag D, Phartiyal B (2015) Climatic variations and geomorphology of the Indus River Valley, between Spituk and Batalik, Ladakh (NW trans Himalayas) in late quaternary. Quat Int 371:87–101

    Google Scholar 

  • Nag D, Phartiyal B, Singh DS (2016) Sedimentary characteristics of palaeolake deposits along the Indus River valley, Ladakh, Trans-Himalaya: implications for the depositional environment. Sedimentology 63:1765–1785

    Article  Google Scholar 

  • Nagar YC, Ganju A, Satyawali PK (2013) Preliminary optical chronology suggests significant advance in Nubra valley glaciers during the Last Glacial Maximum. Curr Sci 105:96–101

    Google Scholar 

  • Nakata T (1972) Geomorphic history and crustal movements of foothills of the Himalaya. Institute of Geography, Tohuku University, Sendai, p 77

    Google Scholar 

  • Nakata T, Otsuki K, Khan SH (1990) Active faults, stress field, and plate motion along the IndoEurasian plate boundary. Tectonophysics 181:83–95

    Article  Google Scholar 

  • Owen LA (2009) Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet. Quat Sci Rev 28:2150–2164

    Article  Google Scholar 

  • Owen LA, Gualtieri L, Finkel RC, Caffee MW, Benn DI, Sharma MC (2001) Cosmogenic radionuclide dating of glacial landforms in the Lahul Himalaya, northern India: defining the timing of Late Quaternary glaciation. J Quat Sci 16:555–563

    Article  Google Scholar 

  • Owen LA, Caffee MW, Bovard KR, Finkel RC, Sharma MC (2006) Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen. Ladakh Range, northern India. Geol Soc Am Bull 118:383–392

    Article  Google Scholar 

  • Owen LA, Bailey RM, Rhodes EJ, Mitchell WA, Coxon P (1997) Style and timing of glaciation in the Lahul Himalaya, northern India: a framework for reconstructing late Quaternary palaeoclimatic change in the western Himalayas. J Quat Sci 12:83–109

    Article  Google Scholar 

  • Owen LA, Caffee MW, Finkel RC, Seong BY (2008) Quaternary glaciations of the Himalayan Tibetan orogen. J Quat Sci 23:513–532

    Article  Google Scholar 

  • Owen LA, Dortch JM (2014) Nature and timing of Quaternary glaciation in the Himalayan Tibetan orogen. Quat Sci Rev 88:14–54

    Article  Google Scholar 

  • Pande K, Padia JT, Ramesh R, Sharma KK (2000) Stable isotope systematics of surface water bodies in the Himalayan and Trans-Himalayan (Kashmir) region. J Earth Syst Sci 109(1):109–115

    Article  Google Scholar 

  • Pant RK, Basavaiah N, Juyal N, Saini NK, Yadava MG, Appel E, Singhvi AK (2005) A 20-ka climate record from Central Himalayan loess deposits. J Quat Sci 20(5):485–492

    Article  Google Scholar 

  • Phartiyal B, Sharma A, Upadhyay R, Ram-Awatar, Sinha AK (2005) Quaternary geology, tectonics and distribution of palaeo- and present fluvio/glacio lacustrine deposits in Ladakh, NW Indian Himalaya – a study based on field observations. Geomorphology 65(3–4):241–256

    Article  Google Scholar 

  • Phartiyal B, Sharma A (2009) Soft-sediment deformation structures in the Late Quaternary sediments of Ladakh: evidence for multiple phases of seismic tremors in the North western Himalayan Region. J Asian Earth Sci 34:761–770

    Article  Google Scholar 

  • Phartiyal B, Sharma A, Kothyari GC (2013) Existence of Late Quaternary and Holocene lakes along the River Indus in Ladakh Region of Trans Himalaya, NW India: implications to lake formation-climate and tectonics. Chin Sci Bull 58(I):142–155

    Google Scholar 

  • Phartiyal B, Singh R, Kothyari GC (2015) Late-quaternary geomorphic scenario due to changing depositional regimes in the Tangtse valley, Trans-Himalaya, NW India. Palaeogeogr Palaeoclimatol Palaeoecol 422:11–24

    Article  Google Scholar 

  • Phartiyal B, Singh R, Nag D (2018) Trans and Tethyan-Himalayan Rivers-in reference to Ladakh and Lahaul Spiti, NW Himalaya, India. In: Singh DS (ed) The Indian Rivers: scientific and socio-economic aspects, Springer hydrogeology book series (SPRINGERHYDRO). Springer, Singapore, pp 367–382

    Chapter  Google Scholar 

  • Phillips WM, Sloan VF, Shroder JF (2000) Asynchronous glaciation at Nanga Parbat, northwestern Himalaya Mountains, Pakistan. Geology 28:431–434

    Article  Google Scholar 

  • Ponzetti JM, McCune BP (2001) Biotic soil crusts of Oregon’s shrub steppe: community composition in relation to soil chemistry, climate, and livestock activity. Bryologist 104:212–225

    Article  Google Scholar 

  • Pratt-Sitaula B, Burbank DW, Heimsath AM, Humphrey NF, Oskin M, Putkonen J (2011) Topographic control of asynchronous glacial advances: a case study from Annapurna, Nepal. Geophys Res Lett 38:L24502

    Article  Google Scholar 

  • Pye K (1995) The nature, origin and accumulation of loess. Quat Sci Rev 14(7):653–667

    Article  Google Scholar 

  • Quamar MF, Nawaz AS, Phartiyal B, Morthekai P, Sharma A (2016) Recovery of palynomorphs from the high-altitude cold desert of Ladakh, NW India: an aerobiological perspective. Geophytology 46(1):67–73

    Google Scholar 

  • Rai H (1982) Geological evidence against the Shyok palaeo-suture, Ladakh Himalaya. Nature 297:142–144

    Article  Google Scholar 

  • Raina RK, Koul MN (2011) Impact of climatic change on agro-ecological zones of the Suru-Zanskar valley, Ladakh (Jammu and Kashmir), India. J Ecol Nat Environ 3(13):424–440

    Google Scholar 

  • Rasmussen KL, Houze RA Jr (2012) A flash flooding storm at the steep edge of high terrain: disaster in the Himalayas. Bull Am Meteorol Soc 93:1713–1724. https://doi.org/10.1175/BAMS-D-11-00236.1

    Article  Google Scholar 

  • Robertson AHF (2000) Formation of melanges in the Indus Suture Zone, Ladakh Himalaya by successive subduction-related, collisional and post collisional processes during Late Mesozoic-Late Tertiary time. Geol Soc Lond Spec Publ 170:333–374

    Article  Google Scholar 

  • Robertson AHF, Collins AS (2002) Shyok suture zone, N. Pakistan: late Mesozoic- Tertiary evolution of a critical suture separating the oceanic Ladakh arc from the Asian continental margin. J Asian Earth Sci 20:309–351

    Article  Google Scholar 

  • Rowley DB (1996) Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet Sci Lett 145:1–13

    Article  Google Scholar 

  • Schaefer JM, Oberholzer P, Zhao ZZ, Ivy-Ochs S, Wieler R, Baur H, Kubik PW, Schlüchter C (2008) Cosmogenic beryllium-10 and neon-21 dating of late Pleistocene glaciations in Nyalam, monsoonal Himalayas. Quat Sci Rev 27:295–311

    Article  Google Scholar 

  • Schäfer JM, Tschudi S, Zhao ZZ, Wu XH, Ivy-Ochs S, Wieler R, Baur H, Kubik PW, Schlüchter C (2002) The limited influence of glaciations in Tibet on global climate over the past 170000 yr. Earth Planet Sci Lett 194:287–297

    Article  Google Scholar 

  • Searle MP (1991) Geology and tectonics of the Karakoram mountains. Wiley, Chichester

    Google Scholar 

  • Searle MP, Windley BF, Coward MP, Copper DJW, Rex AJ, Rex D, Tindong L, Xuchang X, Jan MQ, Thakur VC, Kumar S (1987) The closing of Tethys and the tectonics of the Himalaya. Bull Geol Soc Am 98:678–701

    Article  Google Scholar 

  • Seton M, Müller RD, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Maus S, Chandler M (2012) Global continental and ocean basin reconstructions since 200Ma. Earth Sci Rev 113:212–270

    Article  Google Scholar 

  • Shanker R, Pahdi N, Prakash G, Thussu JL, Wangdus C (1976) Recent geological studies in upper Indus valley and the plate tectonics. Miscellaneous Publications of the Geological Survey of India 34: 42–56

    Google Scholar 

  • Sharma S, Chand P, Bisht P, Shukla AD, Bartarya SK, Sundriyal YP, Juyal N (2016) Factors responsible for driving the glaciation in the Sarchu Plain, eastern Zanskar Himalaya, during the late Quaternary. J Quat Sci 31:495–511

    Article  Google Scholar 

  • Sharma A, Kumar K, Laskar A, Singh SK, Mehta P (2017) Oxygen, deuterium, and strontium isotope characteristics of the Indus River water system. Geomorphology 284:5–16

    Article  Google Scholar 

  • Sinclair HD, Jaffey N (2001) Sedimentology of the Indus Group, palaeo-Indus River. J Geol Soc Lond 158:151–162

    Article  Google Scholar 

  • Singh IB, Sahni A, Jain AK, Upadhay R, Parcha SK, Parmar V, Agarwal KK, Shukla S, Kumar S, Singh MP, Ahmad S, Jigyasu DK, Arya R, Pandey S (2015) Post-collision sedimentation in the Indus basin (Ladakh, India): implications for the evolution of the Northern margin of the Indian plate. J Palaeontol Soc India 60(2):97–146

    Google Scholar 

  • Smith AJ, Donovan JJ, Ito E, Engstrom DR, Panek VA (2002) Climate-driven hydrologic transients in lake sediment records: multiproxy record of mid-Holocene drought. Quat Sci Rev 21:625–646

    Article  Google Scholar 

  • Srikantia SV, Razdan ML (1980) Geology of parts of Central Ladakh Himalaya with particular references to Indus Tectonic Zone. J Geol Soc India 21:523–545

    Google Scholar 

  • Steck A (2003) Geology of NW Indian Himalaya. Eclogae Geol Helv 96:147–196

    Google Scholar 

  • Stevens LR, Stone JR, Campbell J, Fritz SC (2006) A 2200-yr record of hydrologic variability from Foy Lake, Montana, USA, inferred from diatom and geochemical data. Quat Res 65:264–274

    Article  Google Scholar 

  • Stone JR, Fritz SC (2004) Three-dimensional modeling of lacustrine diatom habitat areas: improving paleolimnological interpretation of planktic: benthic ratios. Limnol Oceanogr 49:1540–1548

    Article  Google Scholar 

  • Thakur VC, Misra DK (1984) Tectonic framework of Indus and Shyok suture zones in eastern Ladakh, NW Himalaya. Tectonophysics 101:207–220

    Article  Google Scholar 

  • Thakur VC, Virdi NS (1979) Lithostratigraphy, structural framework, deformation and metamorphism of the SE region of Ladakh Kashmir Himalaya India. Himal Geol 9:63–79

    Google Scholar 

  • Telford RJ, Lamb HF, Mohammed MU (1999) Diatom-derived palaeoconductivity estimates for Lake Awassa, Ethiopia: evidence for pulsed inflows of saline groundwater. J Paleolimnol 21:409–421

    Article  Google Scholar 

  • Thompson LG, Yao T, Mosley-Thompson E, Davis ME, Henderson KA, Lin PN (2000) A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science 289:1916–1919

    Article  Google Scholar 

  • Torsvik TH, Cocks LRM (2013) Gondwana from top to base in space and time. Gondwana Res 24:999–1030

    Article  Google Scholar 

  • Trivedi A, Chauhan MS (2009) Holocene vegetation and climate fluctuations in northwest Himalaya, based on pollen evidence from Surinsar Lake, Jammu region, India. J Geol Soc India 74:402–412

    Article  Google Scholar 

  • Upadhyay R (2014) Palaogeographic significance of ‘Yasin-type’ rudist and orbitolinid fauna of the Shyok suture zone, Saltoro Hills, northern Ladakh, India. Curr Sci 106:223–228

    Google Scholar 

  • Vetaas OR, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob Ecol Biogeogr 11:291–301

    Article  Google Scholar 

  • Wadia DN (1937) The cretaceous volcanic series of Astor-Deosai Kashmir and its intrusions. Record Geol Surv India 72:151–161

    Google Scholar 

  • Walker JCG, Hays PB, Kasting JF (1981) A negative feedback mechanism for the long term stabilization of Earth’s surface temperature. J Geophys Res 86:9776–9782

    Article  Google Scholar 

  • Watson RT, Zinyower MC, Moss RH (1997) The regional impacts of climate change: an assessment of vulnerability. A special report of IPCC Working Group II. Cambridge University Press, Cambridge, p 517

    Google Scholar 

  • Wünnemann B, Demske D, Tarasov P, Kotlia BS, Reinhardt C, Bloemendal J, Diekmann B, Hartmann K, Krois J, Riedel F, Arya N (2010) Hydrological evolution during the last 15 kyr in the TsoKar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quat Sci Rev 29:1138–1155

    Article  Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131

    Article  Google Scholar 

Download references

Acknoledgement

We thank the Director BSIP, Lucknow for providing all necessary support in conducting studies in the Ladakh region of J&K, India. We are also thankful to field parties associated with us during these years. The DC, Leh and Wild Life Department, Jammu (J&K) is thanked for permission to carry out studies in the protected sanctuary area.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Phartiyal, B. (2020). Geomorphological Changes During Quaternary Period Vis a Vis Role of Climate and Tectonics in Ladakh, Trans-Himalaya. In: Dimri, A., Bookhagen, B., Stoffel, M., Yasunari, T. (eds) Himalayan Weather and Climate and their Impact on the Environment . Springer, Cham. https://doi.org/10.1007/978-3-030-29684-1_10

Download citation

Publish with us

Policies and ethics