Skip to main content

Abstract

Sarcomas are a heterogeneous group of malignant tumors that are derived from mesenchymal tissues, including bone, muscle, and cartilage. In the last decade, we have gained significant new insights into the genetic abnormalities that underlie the pathogenesis of these tumors. Specific molecular alterations have been associated with specific histological subtypes of sarcomas, leading to a new classification of many sarcomas. Conventionally grouped in either soft-tissue or bone sarcomas according to the site of their origin, these tumors can now be genetically distinguished in two main groups: those carrying tumor-specific recurrent chromosome aberrations and those with complex karyotypes and variable genetic alterations [1, 2]. Sarcomas with recurrent molecular changes include, among others, Ewing sarcoma, synovial sarcoma, alveolar rhabdomyosarcoma, myxoid liposarcoma and myxoid chondrosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helman LJ, Meltzer P. Mechanisms of sarcoma development. Nat Rev Cancer. 2003;3(9):685–94.

    Article  CAS  PubMed  Google Scholar 

  2. Wunder JS, et al. Opportunities for improving the therapeutic ratio for patients with sarcoma. Lancet Oncol. 2007;8(6):513–24.

    Article  PubMed  Google Scholar 

  3. Delattre O, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992;359:162–5.

    Article  CAS  PubMed  Google Scholar 

  4. Sorensen PH, et al. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet. 1994;6:146–51.

    Article  CAS  PubMed  Google Scholar 

  5. Jeon IS, et al. A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene. 1995;10:1229–34.

    CAS  PubMed  Google Scholar 

  6. Peter M, et al. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene. 1997;14:1159–64.

    Article  CAS  PubMed  Google Scholar 

  7. Ng TL, et al. Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn. 2007;9:459–63.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ginsberg JP, et al. EWS-FLI1 and EWS-ERG gene fusions are associated with similar clinical phenotypes in Ewing’s sarcoma. J Clin Oncol. 1999;17:1809–14.

    Article  CAS  PubMed  Google Scholar 

  9. Brohl AS, et al. The genomic landscape of the Ewing sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 2014;10(7):e1004475.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Crompton BD, et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 2014;4(11):1326–41.

    Article  CAS  PubMed  Google Scholar 

  11. Tirode F, et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov. 2014;4(11):1342–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gangwal K, et al. Microsatellites as EWS/FLI response elements in Ewing’s sarcoma. Proc Natl Acad Sci U S A. 2008;105:10149–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guillon N, et al. The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function. PLoS One. 2009;4:e4932.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tomazou EM, et al. Epigenome mapping reveals distinct modes of gene regulation and widespread enhancer reprogramming by the oncogenic fusion protein EWS-FLI1. Cell Rep. 2015;10:1082–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sheffield NC, et al. DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma. Nat Med. 2017;23:386–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Riggi N, et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell. 2014;26:668–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rocchi A, et al. CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby contributes to oncogenesis. J Clin Invest. 2010;120(3):668–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Herrero-Martín D, et al. Stable interference of EWS-FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target. Br J Cancer. 2009;101(1):80–90.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hattinger CM, et al. Prognostic impact of chromosomal aberrations in Ewing tumours. Br J Cancer. 2002;86:1763–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mackintosh C, et al. 1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma. Oncogene. 2012;31:1287–98.

    Article  CAS  PubMed  Google Scholar 

  21. Erkizan HV, et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat Med. 2009;15:750–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Olmos D, et al. Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing’s sarcoma: a phase 1 expansion cohort study. Lancet Oncol. 2010;11:129–35.

    Article  CAS  PubMed  Google Scholar 

  23. Pappo AS, et al. R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II sarcoma alliance for research through collaboration study. J Clin Oncol. 2011;29:4541–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Theisen ER, Pishas KI, Saund RS, Lessnick SL. Therapeutic opportunities in Ewing sarcoma: EWS-FLI inhibition via LSD1 targeting. Oncotarget. 2016;7:17616–30.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brenner JC, et al. PARP-1 inhibition as a targeted strategy to treat Ewing’s sarcoma. Cancer Res. 2012;72(7):1608–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gorthi A, et al. EWS–FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature. 2018;555:387–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ordóñez JL, et al. The PARP inhibitor olaparib enhances the sensitivity of Ewing sarcoma to trabectedin. Oncotarget. 2015;6:18875–90.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Engert F, et al. PARP inhibitors sensitize Ewing sarcoma cells to temozolomide-induced apoptosis via the mitochondrial pathway. Mol Cancer Ther. 2015;14:2818–30.

    Article  CAS  PubMed  Google Scholar 

  29. Machado I, et al. Immunohistochemical analysis and prognostic significance of PD-L1, PD-1, and CD8+ tumor-infiltrating lymphocytes in Ewing’s sarcoma family of tumors (ESFT). Virchows Arch. 2018;472:815–24.

    Article  CAS  PubMed  Google Scholar 

  30. Spurny C, et al. Programmed cell death ligand 1 (PD-L1) expression is not a predominant feature in Ewing sarcomas. Pediatr Blood Cancer. 2018;65:e26719.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katia Scotlandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scotlandi, K. (2020). Biology of Ewing Sarcoma. In: Picci, P., et al. Diagnosis of Musculoskeletal Tumors and Tumor-like Conditions. Springer, Cham. https://doi.org/10.1007/978-3-030-29676-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29676-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29675-9

  • Online ISBN: 978-3-030-29676-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics