Skip to main content

Abstract

Unlike other sarcomas, high-grade osteosarcoma (HGOS) is characterized by complex, unbalanced karyotypes and alterations in multiple genes and pathways. Due to HGOS high genetic instability, recurrent chromothripsis (a massive genomic rearrangement due to a cataclysmic event in which chromosomes are fragmented and subsequently aberrantly assembled), kataegis (high number of genetic changes due to localized hypermutation areas), and chromoplexy (a process generating chimeric chromosomes) are rather common events and lead to multiple malignant cell populations within the same tumor [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E, et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014;7(1):104–12. https://doi.org/10.1016/j.celrep.2014.03.003. S2211-1247(14)00165-X [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet Cytogenet. 2003;145(1):1–30. S0165460803001055 [pii].

    Article  CAS  Google Scholar 

  3. Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma—connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017;13(8):480–91. https://doi.org/10.1038/nrendo.2017.16. nrendo.2017.16 [pii].

    Article  CAS  PubMed  Google Scholar 

  4. Hattinger CM, Reverter-Branchat G, Remondini D, Castellani GC, Benini S, Pasello M, et al. Genomic imbalances associated with methotrexate resistance in human osteosarcoma cell lines detected by comparative genomic hybridization-based techniques. Eur J Cell Biol. 2003;82(9):483–93. https://doi.org/10.1078/0171-9335-00336. S0171-9335(04)70319-2 [pii].

    Article  CAS  PubMed  Google Scholar 

  5. Hattinger CM, Stoico G, Michelacci F, Pasello M, Scionti I, Remondini D, et al. Mechanisms of gene amplification and evidence of coamplification in drug-resistant human osteosarcoma cell lines. Genes Chromosomes Cancer. 2009;48(4):289–309. https://doi.org/10.1002/gcc.20640.

    Article  CAS  PubMed  Google Scholar 

  6. Hattinger CM, Fanelli M, Tavanti E, Vella S, Ferrari S, Picci P, et al. Advances in emerging drugs for osteosarcoma. Expert Opin Emerg Drugs. 2015;20(3):495–514. https://doi.org/10.1517/14728214.2015.1051965.

    Article  CAS  PubMed  Google Scholar 

  7. Baldini N, Scotlandi K, Barbanti-Brodano G, Manara MC, Maurici D, Bacci G, et al. Expression of P-glycoprotein in high-grade osteosarcomas in relation to clinical outcome. N Engl J Med. 1995;333(21):1380–5. https://doi.org/10.1056/NEJM199511233332103.

    Article  CAS  PubMed  Google Scholar 

  8. Chan HS, Grogan TM, Haddad G, DeBoer G, Ling V. P-glycoprotein expression: critical determinant in the response to osteosarcoma chemotherapy. J Natl Cancer Inst. 1997;89(22):1706–15.

    Article  CAS  Google Scholar 

  9. Pakos EE, Ioannidis JP. The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma. A meta-analysis. Cancer. 2003;98(3):581–9. https://doi.org/10.1002/cncr.11546.

    Article  CAS  PubMed  Google Scholar 

  10. Serra M, Pasello M, Manara MC, Scotlandi K, Ferrari S, Bertoni F, et al. May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol. Int J Oncol. 2006;29(6):1459–68.

    CAS  PubMed  Google Scholar 

  11. Serra M, Scotlandi K, Reverter-Branchat G, Ferrari S, Manara MC, Benini S, et al. Value of P-glycoprotein and clinicopathologic factors as the basis for new treatment strategies in high-grade osteosarcoma of the extremities. J Clin Oncol. 2003;21(3):536–42. https://doi.org/10.1200/JCO.2003.03.144.

    Article  CAS  PubMed  Google Scholar 

  12. Fanelli M, Hattinger CM, Vella S, Tavanti E, Michelacci F, Gudeman B, et al. Targeting ABCB1 and ABCC1 with their specific inhibitor CBT-1(R) can overcome drug resistance in osteosarcoma. Curr Cancer Drug Targets. 2016;16(3):261–74. CCDT-EPUB-71612 [pii].

    Article  CAS  Google Scholar 

  13. Chou AJ, Kleinerman ES, Krailo MD, Chen Z, Betcher DL, Healey JH, et al. Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: a report from the Children’s Oncology Group. Cancer. 2009;115(22):5339–48. https://doi.org/10.1002/cncr.24566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meyers PA. Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma. Expert Rev Anticancer Ther. 2009;9(8):1035–49. https://doi.org/10.1586/era.09.69.

    Article  CAS  PubMed  Google Scholar 

  15. Meyers PA, Chou AJ. Muramyl tripeptide-phosphatidyl ethanolamine encapsulated in liposomes (L-MTP-PE) in the treatment of osteosarcoma. Adv Exp Med Biol. 2014;804:307–21. https://doi.org/10.1007/978-3-319-04843-7_17.

    Article  CAS  PubMed  Google Scholar 

  16. Hattinger CM, Vella S, Tavanti E, Fanelli M, Picci P, Serra M. Pharmacogenomics of second-line drugs used for treatment of unresponsive or relapsed osteosarcoma patients. Pharmacogenomics. 2016;17(18):2097–114. https://doi.org/10.2217/pgs-2016-0116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Serra M, Hattinger CM. The pharmacogenomics of osteosarcoma. Pharmacogenomics J. 2017;17(1):11–20. https://doi.org/10.1038/tpj.2016.45. tpj201645 [pii].

    Article  CAS  PubMed  Google Scholar 

  18. Kovac M, Blattmann C, Ribi S, Smida J, Mueller NS, Engert F, et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun. 2015;6:8940. https://doi.org/10.1038/ncomms9940. ncomms9940 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Serra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Serra, M., Hattinger, C.M. (2020). Biology of Osteosarcomas. In: Picci, P., et al. Diagnosis of Musculoskeletal Tumors and Tumor-like Conditions. Springer, Cham. https://doi.org/10.1007/978-3-030-29676-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29676-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29675-9

  • Online ISBN: 978-3-030-29676-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics