Skip to main content

Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems with Uncertainty

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11750))

Abstract

Piecewise Barrier Tubes (PBT) is a new technique for flowpipe overapproximation for nonlinear systems with polynomial dynamics, which leverages a combination of barrier certificates. PBT has advantages over traditional time-step based methods in dealing with those nonlinear dynamical systems in which there is a large difference in speed between trajectories, producing an overapproximation that is time independent. However, the existing approach for PBT is not efficient due to the application of interval methods for enclosure-box computation, and it can only deal with continuous dynamical systems without uncertainty. In this paper, we extend the approach with the ability to handle both continuous and hybrid dynamical systems with uncertainty that can reside in parameters and/or noise. We also improve the efficiency of the method significantly, by avoiding the use of interval-based methods for the enclosure-box computation without loosing soundness. We have developed a C++ prototype implementing the proposed approach and we evaluate it on several benchmarks. The experiments show that our approach is more efficient and precise than other methods in the literature.

This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23, S11405-N23 (RiSE/SHiNE), ADynNet (P28182), and Z211-N23 (Wittgenstein Award) and the Deutsche Forschungsgemeinschaft project 389792660-TRR 248.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Althoff, M., Grebenyuk, D.: Implementation of interval arithmetic in CORA 2016. In: Proceedings of ARCH. EPiC Series in Computing, vol. 43, pp. 91–105. EasyChair (2017)

    Google Scholar 

  2. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Inform. 43(7), 451–476 (2007)

    Article  MathSciNet  Google Scholar 

  3. Ben Sassi, M.A., Sankaranarayanan, S., Chen, X., Ábrahám, E.: Linear relaxations of polynomial positivity for polynomial lyapunovfunction synthesis. IMA J. Math. Control. Inf. 33(3), 723–756 (2015)

    Article  Google Scholar 

  4. Berz, M., Makino, K.: Verified integration of odes and flows using differential algebraic methods on high-order taylor models. Reliab. Comput. 4(4), 361–369 (1998)

    Article  MathSciNet  Google Scholar 

  5. Bogomolov, S., Schilling, C., Bartocci, E., Batt, G., Kong, H., Grosu, R.: Abstraction-based parameter synthesis for multiaffine systems. In: Piterman, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 19–35. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26287-1_2

    Chapter  Google Scholar 

  6. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18

    Chapter  Google Scholar 

  7. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Experimenting on solving nonlinear integer arithmetic with incremental linearization. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 383–398. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_23

    Chapter  MATH  Google Scholar 

  8. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental linearization for satisfiability and verification modulo nonlinear arithmetic and transcendental functions. ACM Trans. Comput. Log. 19(3), 19:1–19:52 (2018)

    Article  MathSciNet  Google Scholar 

  9. Cyranka, J., Islam, M.A., Byrne, G., Jones, P., Smolka, S.A., Grosu, R.: Lagrangian reachabililty. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 379–400. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_19

    Chapter  Google Scholar 

  10. Cyranka, J., Islam, Md.A., Smolka, S.A., Gao, S., Grosu, R.: Tight continuous-time reachtubes for lagrangian reachability. In: Proceedings of CDC 2018: 57th IEEE Conference on Decision and Control. IEEE (2018, to appear)

    Google Scholar 

  11. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_5

    Chapter  Google Scholar 

  12. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. JSAT 1(3–4), 209–236 (2007)

    MATH  Google Scholar 

  13. Frehse, G., Krogh, B.H., Rutenbar, R.A.: Verification of hybrid systems using iterative refinement. In: Proceedings of SRC TECHCON 2005, Portland, USA, 24–26 October 2005

    Google Scholar 

  14. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  15. Girard, A., Le Guernic, C.: Efficient reachability analysis for linear systems using support functions. Proc. IFAC World Congr. 41(2), 8966–8971 (2008)

    Google Scholar 

  16. Grosu, R., et al.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_31

    Chapter  Google Scholar 

  17. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1_18

    Chapter  Google Scholar 

  18. Gupta, S., Krogh, B.H., Rutenbar, R.A.: Towards formal verification of analog and mixed-signal designs. In: TECHCON (2003)

    Google Scholar 

  19. Gurung, A., Ray, R., Bartocci, E., Bogomolov, S., Grosu, R.: Parallel reachability analysis of hybrid systems in xspeed. Int. J. Softw. Tools Technol. Transf., 1–23 (2018, to appear)

    Google Scholar 

  20. Hartong, W., Hedrich, L., Barke, E.: Model checking algorithms for analog verification. In: Proceedings of the 39th annual Design Automation Conference, pp. 542–547. ACM (2002)

    Google Scholar 

  21. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of IEEE Symposium on Logic in Computer Science, pp. 278–292 (1996)

    Google Scholar 

  22. Jiang, Y., Song, H., Wang, R., Gu, M., Sun, J., Sha, L.: Data-centered runtime verification of wireless medical cyber-physical system. IEEE Trans. Ind. Inform. 13(4), 1900–1909 (2017)

    Article  Google Scholar 

  23. Jiang, Y., Wang, M., Liu, H., Hosseini, M., Sun, J.: Dependable integrated clinical system architecture with runtime verification. In: 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 951–956, November 2017

    Google Scholar 

  24. Kong, H., Bartocci, E., Henzinger, T.A.: Reachable set over-approximation for nonlinear systems using piecewise barrier tubes. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 449–467. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_24

    Chapter  Google Scholar 

  25. Kong, H., Bogomolov, S., Schilling, C., Jiang, Y., Henzinger, T.A.: Safety verification of nonlinear hybrid systems based on invariant clusters. In: Proceedings of HSCC 2017: the 20th International Conference on Hybrid Systems: Computation and Control, pp. 163–172. ACM (2017)

    Google Scholar 

  26. Kong, H., He, F., Song, X., Hung, W.N.N., Gu, M.: Exponential-condition-based barrier certificate generation for safety verification of hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 242–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_17

    Chapter  Google Scholar 

  27. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: \({\delta }\)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_15

    Chapter  Google Scholar 

  28. Krilavicius, T.: Hybrid techniques for hybrid systems. Ph.D. thesis, University of Twente, Enschede, Netherlands (2006)

    Google Scholar 

  29. Lasserre, J.B.: Polynomial programming: LP-relaxations also converge. SIAM J. Optim. 15(2), 383–393 (2005)

    Article  MathSciNet  Google Scholar 

  30. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical systems. In: Proceedings of EMSOFT 2011: the 11th International Conference on Embedded Software, pp. 97–106. ACM (2011)

    Google Scholar 

  31. Matringe, N., Moura, A.V., Rebiha, R.: Generating invariants for non-linear hybrid systems by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 373–389. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15769-1_23

    Chapter  Google Scholar 

  32. Nedialkov, N.S.: Interval tools for ODEs and DAEs. In: Proceedings of SCAN 2006: the 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, pp. 4–4. IEEE (2006)

    Google Scholar 

  33. Prabhakar, P., García Soto, M.: Hybridization for stability analysis of switched linear systems. In: Proceedings of HSCC 2016: of the 19th International Conference on Hybrid Systems: Computation and Control, pp. 71–80. ACM (2016)

    Google Scholar 

  34. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2_32

    Chapter  MATH  Google Scholar 

  35. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)

    Article  MathSciNet  Google Scholar 

  36. Ray, R., Gurung, A., Das, B., Bartocci, E., Bogomolov, S., Grosu, R.: XSpeed: accelerating reachability analysis on multi-core processors. In: Piterman, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26287-1_1

    Chapter  Google Scholar 

  37. Roohi, N., Prabhakar, P., Viswanathan, M.: Hybridization based CEGAR for hybrid automata with affine dynamics. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 752–769. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_48

    Chapter  Google Scholar 

  38. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using ideal fixed points. In: Proceedings of HSCC 2010: the 13th ACM International Conference on Hybrid Systems: Computation and Control, pp. 221–230. ACM (2010)

    Google Scholar 

  39. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–554. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2_36

    Chapter  MATH  Google Scholar 

  40. Sankaranarayanan, S., Chen, X., et al.: Lyapunov function synthesis using handelman representations. IFAC Proc. Vol. 46(23), 576–581 (2013)

    Article  Google Scholar 

  41. Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: HyPro: A C++ library of state set representations for hybrid systems reachability analysis. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 288–294. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_20

    Chapter  Google Scholar 

  42. Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for invariant generation for polynomial continuous systems. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 268–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5_13

    Chapter  Google Scholar 

  43. Stengle, G.: A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Mathematische Annalen 207(2), 87–97 (1974)

    Article  MathSciNet  Google Scholar 

  44. Taly, A., Tiwari, A.: Deductive verification of continuous dynamical systems. In: FSTTCS, vol. 4, pp. 383–394 (2009)

    Google Scholar 

  45. Yang, Z., Huang, C., Chen, X., Lin, W., Liu, Z.: A linear programming relaxation based approach for generating barrier certificates of hybrid systems. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 721–738. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6_44

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kong, H., Bartocci, E., Jiang, Y., Henzinger, T.A. (2019). Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems with Uncertainty. In: André, É., Stoelinga, M. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2019. Lecture Notes in Computer Science(), vol 11750. Springer, Cham. https://doi.org/10.1007/978-3-030-29662-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29662-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29661-2

  • Online ISBN: 978-3-030-29662-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics