Skip to main content

Reachability Analysis for High-Index Linear Differential Algebraic Equations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11750))

Abstract

Reachability analysis is a fundamental problem for safety verification and falsification of Cyber-Physical Systems (CPS) whose dynamics follow physical laws usually represented as differential equations. In the last two decades, numerous reachability analysis methods and tools have been proposed for a common class of dynamics in CPS known as ordinary differential equations (ODE). However, there is lack of methods dealing with differential algebraic equations (DAE), which is a more general class of dynamics that is widely used to describe a variety of problems from engineering and science, such as multibody mechanics, electrical circuit design, incompressible fluids, molecular dynamics, and chemical process control. Reachability analysis for DAE systems is more complex than ODE systems, especially for high-index DAEs because they contain both a differential part (i.e., ODE) and algebraic constraints (AC). In this paper, we propose a scalable reachability analysis for a class of high-index large linear DAEs. In our approach, a high-index linear DAE is first decoupled into one ODE and one or several AC subsystems based on the well-known Marz decoupling method utilizing admissible projectors. Then, the discrete reachable set of the DAE, represented as a list of star-sets, is computed using simulation. Unlike ODE reachability analysis where the initial condition is freely defined by a user, in DAE cases, the consistency of the initial condition is an essential requirement to guarantee a feasible solution. Therefore, a thorough check for the consistency is invoked before computing the discrete reachable set. Our approach successfully verifies (or falsifies) a wide range of practical, high-index linear DAE systems in which the number of state variables varies from several to thousands.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Available online: http://www.taylortjohnson.com/research/tran2019formats_extended.pdf.

  2. 2.

    https://github.com/verivital/daev/releases/tag/formats2019.

References

  1. Althoff, M., Krogh, B.: Reachability analysis of nonlinear differential-algebraic systems. IEEE Trans. Autom. Control 59(2), 371–383 (2014). https://doi.org/10.1109/TAC.2013.2285751

    Article  MathSciNet  MATH  Google Scholar 

  2. Althoff, M.: An introduction to CORA 2015. In: Proceedings of the Workshop on Applied Verification for Continuous and Hybrid Systems (2015)

    Google Scholar 

  3. Bak, S., Beg, O.A., Bogomolov, S., Johnson, T.T., Nguyen, L.V., Schilling, C.: Hybrid automata: from verification to implementation. Int. J. Softw. Tools Technol. Transf. 21(1), 87–104 (2019). https://doi.org/10.1007/s10009-017-0458-1

    Article  Google Scholar 

  4. Bak, S., Bogomolov, S., Johnson, T.T.: HYST: a source transformation and translation tool for hybrid automaton models. In: Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, pp. 128–133. ACM (2015)

    Google Scholar 

  5. Bak, S., Duggirala, P.S.: Simulation-equivalent reachability of large linear systems with inputs. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 401–420. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_20

    Chapter  Google Scholar 

  6. Bak, S., Tran, H.D., Johnson, T.T.: Numerical verification of affine systems with up to a billion dimensions. In: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2019, pp. 23–32. ACM, New York (2019). https://doi.org/10.1145/3302504.3311792

  7. Banagaaya, N., Alì, G., Schilders, W.H.: Index-Aware Model Order Reduction Methods. Springer, Cham (2016). https://doi.org/10.2991/978-94-6239-189-5

    Book  MATH  Google Scholar 

  8. Byrne, G., Ponzi, P.: Differential-algebraic systems, their applications and solutions. Comput. Chem. Eng. 12(5), 377–382 (1988)

    Article  Google Scholar 

  9. Chahlaoui, Y., Van Dooren, P.: A collection of benchmark examples for model reduction of linear time invariant dynamical systems (2002)

    Google Scholar 

  10. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18

    Chapter  Google Scholar 

  11. Cross, E.A., Mitchell, I.M.: Level set methods for computing reachable sets of systems with differential algebraic equation dynamics. In: American Control Conference, pp. 2260–2265. IEEE (2008)

    Google Scholar 

  12. Dai, L.: Singular Control Systems. Lecture Notes in Control and Information Sciences. Springer, Heidelberg (1989)

    Book  Google Scholar 

  13. Dang, T., Donzé, A., Maler, O.: Verification of analog and mixed-signal circuits using hybrid system techniques. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 21–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30494-4_3

    Chapter  Google Scholar 

  14. Duan, G.R.: Analysis and Design of Descriptor Linear Systems, vol. 23. Springer, New York (2010)

    Book  Google Scholar 

  15. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_5

    Chapter  Google Scholar 

  16. Duggirala, P.S., Viswanathan, M.: Parsimonious, simulation based verification of linear systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 477–494. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_26

    Chapter  MATH  Google Scholar 

  17. Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics, vol. 45. Springer, Wiesbaden (1998). https://doi.org/10.1007/978-3-663-09828-7

    Book  MATH  Google Scholar 

  18. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachability analysis for nonlinear hybrid models with C2E2. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 531–538. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_29

    Chapter  Google Scholar 

  19. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  20. Gerdin, M.: Parameter estimation in linear descriptor systems. Citeseer (2004)

    Google Scholar 

  21. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2_19

    Chapter  MATH  Google Scholar 

  22. Guernic, C.L., Girard, A.: Reachability analysis of linear systems using support functions. Nonlinear Anal. Hybrid Syst. 4(2), 250–262 (2010). https://doi.org/10.1016/j.nahs.2009.03.002

    Article  MathSciNet  MATH  Google Scholar 

  23. Han, Z., Krogh, B.H.: Reachability analysis of large-scale affine systems using low-dimensional polytopes. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 287–301. Springer, Heidelberg (2006). https://doi.org/10.1007/11730637_23

    Chapter  MATH  Google Scholar 

  24. Ho, C.W., Ruehli, A., Brennan, P.: The modified nodal approach to network analysis. IEEE Trans. Circuits Syst. 22(6), 504–509 (1975)

    Article  Google Scholar 

  25. Kong, S., Gao, S., Chen, W., Clarke, E.: dreach: \(\delta \)-reachability analysis for hybrid systems, pp. 200–205 (2015)

    Google Scholar 

  26. März, R.: Canonical projectors for linear differential algebraic equations. Comput. Math. Appl. 31(4–5), 121–135 (1996)

    Article  MathSciNet  Google Scholar 

  27. Mehrmann, V., Stykel, T.: Balanced truncation model reduction for large-scale systems in descriptor form. In: Benner, P., Sorensen, D.C., Mehrmann, V. (eds.) Dimension Reduction of Large-Scale Systems. LNCSE, vol. 45, pp. 83–115. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-27909-1_3

    Chapter  MATH  Google Scholar 

  28. Mitchell, I.M., Susuki, Y.: Level set methods for computing reachable sets of hybrid systems with differential algebraic equation dynamics. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 630–633. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78929-1_51

    Chapter  MATH  Google Scholar 

  29. Musau, P., Lopez, D.M., Tran, H.D., Johnson, T.T.: Linear differential-algebraic equations (benchmark proposal). EPiC Ser. Comput. 54, 174–184 (2018)

    Article  Google Scholar 

  30. Schon, T., Gerdin, M., Glad, T., Gustafsson, F.: A modeling and filtering framework for linear differential-algebraic equations. In: 42nd IEEE Conference on Decision and Control. Proceedings, vol. 1, pp. 892–897. IEEE (2003)

    Google Scholar 

  31. Tran, H.D., Bao, T., Johnson, T.T.: Discrete-space analysis of partial differential equations. EPiC Seri. Comput. 54, 185–195 (2018)

    Article  Google Scholar 

  32. Tran, H.D., Nguyen, L.V., Hamilton, N., Xiang, W., Johnson, T.T.: Reachability analysis for high-index linear differential algebraic equations: extended version. In: 17th International Conference on Formal Modeling and Analysis of Timed Systems (2019)

    Google Scholar 

  33. Tran, H.D., Nguyen, L.V., Johnson, T.T.: Large-scale linear systems from order-reduction (benchmark proposal). In: 3rd Applied Verification for Continuous and Hybrid Systems Workshop (ARCH), Vienna, Austria (2016)

    Google Scholar 

  34. Tran, H.D., Nguyen, L.V., Xiang, W., Johnson, T.T.: Order-reduction abstractions for safety verification of high-dimensional linear systems. Discrete Event Dyn. Syst. 27(2), 443–461 (2017)

    Article  MathSciNet  Google Scholar 

  35. Tran, H.D., Xiang, W., Bak, S., Johnson, T.T.: Reachability analysis for one dimensional linear parabolic equations. IFAC-PapersOnLine 51(16), 133–138 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The material presented in this paper is based upon work supported by the National Science Foundation (NSF) under grant numbers CNS 1464311, CNS 1713253, SHF 1527398, and SHF 1736323, the Air Force Office of Scientific Research (AFOSR) through contract numbers FA9550-15-1-0258, FA9550-16-1-0246, and FA9550-18-1-0122. The U.S. government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of AFOSR or NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taylor T. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, HD., Nguyen, L.V., Hamilton, N., Xiang, W., Johnson, T.T. (2019). Reachability Analysis for High-Index Linear Differential Algebraic Equations. In: André, É., Stoelinga, M. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2019. Lecture Notes in Computer Science(), vol 11750. Springer, Cham. https://doi.org/10.1007/978-3-030-29662-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29662-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29661-2

  • Online ISBN: 978-3-030-29662-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics