Skip to main content

Effect of Nano-enhancement on Acacia Wood Bio-composites

  • Chapter
  • First Online:
Acacia Wood Bio-composites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 266 Accesses

Abstract

This chapter explain about nano-enhancement on acacia wood bio-composites. The tensile, flexural and impact tests were describe in this study. The optimum tensile strength was achieved at 10 wt% weight percentage for both U-AW-NCHB-PLA/PHA and M-AW-NCHB-PLA/PHA bio-composites. The optimal flexural strength for AW-NCHB-PLA/PHA bio-composites was achieved at 10 wt% weight percentage for both U-AW-NCHB-PLA/PHA and M-AW-NCHB-PLA/PHA bio-composites. The optimal impact strength for AW-NCHB-PLA/PHA bio-composites was achieved at 10 wt% fiber loadings for both U-AW-NCHB-PLA/PHA and M-AW-NCHB-PLA/PHA bio-composites. Nano-clay enhancement increased the viscosity of the polymer blend, hence increases the threshold mechanical strength of the bio-composites. A strong adhesion was created between fiber and polymer, due to the incorporation of nano-clay, which reduces the agglomeration and formation of void during fabrication. It was observed that the U-AW and NCHB-PLA/PHA has a smooth surface structure and could be considered as semi-brittle/semi-ductile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdellaoui, H., Bensalah, H., Raji, M., Rodrigue, D., Bouhfid, R., & Qaiss, A. (2017). Laminated epoxy biocomposites based on clay and jute fibers. Journal of Bionic Engineering, 14(2), 379–389.

    Article  Google Scholar 

  • Armemtamo, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S. … Kenny, J. M. (2015) Processing and characterization of plasticized PLA/PHA blends for biodegradable multiphase system. eXPRESS Polymer Letters, 9(7), 583–596.

    Article  CAS  Google Scholar 

  • Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2015). Development of flexible materials based on plasticized electrospun PLA-PHB blends: Structural, thermal, mechanical and disintegration properties. European Polymer Journal, 73(1), 433–446.

    Article  CAS  Google Scholar 

  • ASTM D150-11. (2011). Standard test methods for AC loss characteristics and permittivity (dielectric constant) of solid electrical insulation. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM D638-14. (2014). Standard test method for tensile properties of plastics. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM D790-17. (2017). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM D3418-15, 2015. (2015). Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM D4812-11. (2011). Standard test method for unnotched cantilever beam impact resistance of plastics. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM D6400-12. (2012). Standard specification for labeling of plastics designed to be aerobically composted in municipal or industrial facilities. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM D6866-16. (2016). Standard test methods for determining the biobased content of solid, liquid, and gaseous samples using radiocarbon analysis. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM E41-92. (2010). Terminology relating to conditioning. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM E168-16. (2016). Standard practices for general techniques of infrared quantitative analysis. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM E1131-08. (2014). Standard test method for compositional analysis by thermogravimetry. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM E1252-98. (2013). Standard practice for general techniques for obtaining infrared spectra for qualitative analysis. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM E1269-11. (2011). Standard test method for determining specific heat capacity by differential scanning calorimetry. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM E1868-10. (2015). Standard test for loss-on-drying by thermogravimetry. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM E2015-04. (2014). Standard guide for preparation of plastics and polymeric specimens for microstructural examination. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • Avila-Orta, C. A., González-Morones, P., Espinoza-González, C. J., Martínez-Colunga, J. G., Neira-Velázquez, M. G., Sáenz-Galindo, A., et al. (2013). Toward greener chemistry methods for preparation of hybrid polymer materials based on carbon nanotubes. In S. Suzuki (Ed.), Syntheses and applications of carbon nanotubes and their composites (pp. 1–20). Rijeka: InTech.

    Google Scholar 

  • Balakrishna, A., Rao, D. N., & Rakesh, A. S. (2013). Characterization and modeling of process parameters on tensile strength of short and randomly oriented Borassus Flabellifer (Asian Palmyra) fiber reinforced composite. Composites Part B Engineering, 55(1), 479–485.

    Article  CAS  Google Scholar 

  • Bensalah, H., Gueraoui, K., Essabir, H., Rodrigue, D., Bouhfid, R., & Qaiss, A. (2017). Mechanical, thermal, and rheological properties of polypropylene hybrid composites based clay and graphite. Journal of Composite Materials, 51(25), 3563–3576.

    Article  CAS  Google Scholar 

  • Bledzki, A. K., & Faruk, O. (2003). Wood fibre reinforced polypropylene composites: Effect of fibre geometry and coupling agent on physico-mechanical properties. Applied Composite Materials, 10(6), 365–379.

    Article  CAS  Google Scholar 

  • Boynard, C. A., & D’Almeida, J. R. M. (2000). Morphological characterization and mechanical behaviour of sponge gourd (luffa cylindrical)-polyester composite materials. Polymer and Plastic Technology, 39(3), 489–499.

    Article  CAS  Google Scholar 

  • Bozkurt, E., Kaya, E., & Tanoglu, M. (2007). Mechanical and thermal behaviour of non-crimp glass fiber reinforced layered clay/epoxy nanocomposites. Composites Science and Technology, 67(15–16), 3394–3403.

    Article  CAS  Google Scholar 

  • Chen, G., Kim, H., Kim, E., & Yoon, J. (2005). Compatibilization-like effect of reactive organoclay on the poly (l-lactide)/poly (butylene succinate) blends. Polymer, 46(25), 11829–11836.

    Article  CAS  Google Scholar 

  • Chuai, C., Almdal, K., Poulsen, L., & Plackett, D. (2001). Conifer fibers as reinforcing materials for polypropylene-based composites. Journal of Applied Polymer Science, 80(14), 2833–2841.

    Article  CAS  Google Scholar 

  • Dagnon, K. L., Chen, H. H., Innocentini-Mei, L., & D’Souza, N. A. (2009). Poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] layered double hydroxide nanocomposites. Polymer International, 58(2), 133–141.

    Article  CAS  Google Scholar 

  • Dewan, M. W., Hossain, M. K., Hosur, M., & Jeelani, S. (2013). Thermomechanical properties of alkali treated jute-polyester/nanoclay biocomposites fabricated by VARTM process. Journal of Applied Polymer Science, 128(6), 4110–4123.

    Article  CAS  Google Scholar 

  • Doran, C. J., & Turnbull, J. W. (1997). Australian trees and shrubs: Species for land rehabilitation and farm planting in the tropics. ACIAR Monograph, 1(22), 1–384.

    Google Scholar 

  • Eichhorn, S. J., Baillie, C. A., Zafieropoulos, N., Mwaikambo, L. Y., Ansell, M. P., Dufresne, A. … Wild, P. M. (2001). Review: Current international research into cellulosic fibres and composites. Journal of Materials Science, 36(9), 2107–2131.

    Article  CAS  Google Scholar 

  • Ero-Phillips, O., Jenkins, M., & Stamboulis, A. (2012). Tailoring crystallinity of electrospun plla fibres by control of electrospinning parameters. Polymers, 4(3), 1331–1348.

    Article  CAS  Google Scholar 

  • Felix, J. M., & Gatenholm, P. (1991). The nature of adhesion in composites of modified cellulose fibers and polypropylene. Journal of Applied Polymer Science, 42(3), 609–620.

    Article  CAS  Google Scholar 

  • Hamidi, Y. K., Aktas, L., & Altan, M. C. (2008). Effect of nanoclay content on void morphology in resin transfer molded composites. Journal of Thermoplastic Composite Materials, 21(2), 141–163.

    Article  CAS  Google Scholar 

  • Haq, M., Burgueno, R., Mohanty, A. K., & Misra, M. (2009). Processing techniques for bio-based unsaturated-polyester/clay nanocomposites: Tensile properties, efficiency, and limits. Composites Part A Applied Science and Manufacturing, 40(4), 394–403.

    Article  Google Scholar 

  • Hu, Y., Sato, H., Zhang, J., Noda, I., & Ozaki, Y. (2008). Crystallization behavior of poly(L-lactic Acid) affected by the addition of small amount of poly(3-hydroxybutyrate). Polymer, 49(19), 4204–4210.

    Article  CAS  Google Scholar 

  • Inagaki, M., & Titin, J. (2009). Evaluation of site environments for agroforestry production. Development of Agroforestry Technology for the Rehabilitation of Tropical Forests. Japan International Research Center for Agricultural, Sciences, Tsukuba, 26–31.

    Google Scholar 

  • Ismail, H., & Mega, L. (2001). Effects of a compatibilizer and silane coupling agent on the mechanical properties of white rice husk ash filled polypropylene/natural rubber blend. Polymer-Plastics Technology and Engineering, 40(4), 463–478.

    Article  CAS  Google Scholar 

  • Jiang, L., Zhang, J., & Wolcott, M. P. (2007). Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms. Polymer, 48(26), 7632–7644.

    Article  CAS  Google Scholar 

  • Joseph, K., Thomas, S., & Pavithran, C. (1996). Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer, 37(23), 5139–5149.

    Article  CAS  Google Scholar 

  • Khalil, A. S., Rahim, A. A., Taha, K. K., & Abdallah, K. B. (2013). Characterization of methanolic extracts of agarwood leaves. Journal of Applied and Industrial Science, 1(3), 78–88.

    Google Scholar 

  • Kumar, S., Choudhary, V., & Kumar, R. (2010). Study on the compatibility of unbleached and bleached bamboo-fiber with LLDPE matrix. Journal of Thermal Analysis and Calorimetry, 102(2), 751–761.

    Article  CAS  Google Scholar 

  • Li, S., & Mc Carthy, S. (1999). Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s. Macromolecules, 32(13), 4454–4456.

    Article  CAS  Google Scholar 

  • Logan, A. F., & Balodis, V. (1982). Pulping and papermaking characteristics of plantation-grown Acacia mangium from Sabah. Malaysian Forester, 45(1), 217–236.

    Google Scholar 

  • Lu, C., & Mai, Y. W. (2005). Influence of aspect ratio on barrier properties of polymer-clay nanocomposites. Physical Review Letters, 95(8), 88–303.

    Article  Google Scholar 

  • Ma, J., Xu, J., Ren, J. H., Yu, Z. Z., & Mai, Y. W. (2003). A new approach to polymer/montmorillonite nanocomposites. Polymer, 44(16), 4619–4624.

    Article  CAS  Google Scholar 

  • Maldas, D., & Kokta, B. V. (1990). Effect of extreme conditions on the mechanical properties of wood fiber-polystyrene composites. Ii. Sawust as a reinforcing filler. Polymer-Plastics Technology and Engineering, 29(1–2), 119–165.

    Article  CAS  Google Scholar 

  • Mittal, V. (2009). Polymer layered silicate nanocomposites: A review. Materials, 2(3), 992–1057.

    Article  CAS  Google Scholar 

  • National Research Council. (1983). Magium and other fast growing Acacias for the humid tropics. Washington DC: Natural Academic Press.

    Google Scholar 

  • Peh, T. B., Khoo, K. C., & Lee, T. W. (1982). Sulphate pulping of Acacia mangium and cleistopholis glauca from Sabah. Malaysian Forester, 45(1), 404–418.

    Google Scholar 

  • Peh, T. B., & Khoo, K. C. (1984). Timber properties of Acacia mangium, gmelina arborea, and paraserianthes falcataria and their utilization aspects. Malaysian Forester, 47(1), 285–303.

    Google Scholar 

  • PERKASA. (2009). Seminar on viability assessment of indigenous tree species and propagation techniques for planted forest development in Sarawak. Sarawak Timber Industry Development Corporation Newsletter, 1(5/6), 6–8.

    Google Scholar 

  • Pickering, K. L., Aruan Efendy, M. G., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A Applied Science and Manufacturing, 83(1), 98–112.

    Article  CAS  Google Scholar 

  • Rana, A. K., & Jayachandran, K. (2000). Jute fiber for reinforced composites and its prospects. Molecular Crystals and Liquid Crystals, 353(1), 35–45.

    Article  CAS  Google Scholar 

  • Ray, S. S., & Okamoto, M. (2003). Polymer/layered Silicate nanocomposites: A review from preparation to processing. Progress in Polymer Science, 28(11), 1539–1641.

    Article  CAS  Google Scholar 

  • Razali, A. K., & Kuo, H. S. (1983). Properties of particleboard manufactured from fast growing plantation species. In Proceedings of Symposium on Recent Development in Tree Plantations of Humid/Subhumid Tropics of Asia (Vol. 1, no. 1, pp. 685–691).

    Google Scholar 

  • Sining, U. (1989). Some wood properties of Acacia mangium wild, from three provenances grown in Sabah (Thesis). Universiti Pertanian Malaysia.

    Google Scholar 

  • Ven de Velde, K., & Kiekens, P. (2001). Influence of fibre and matrix modifications on mechanical and physical properties of flax fibre reinforced polypropylene. Macromolecular Materials and Engineering, 286(4), 237–242.

    Article  Google Scholar 

  • Wagner, A., Poursorkhabi, V., Mohanty, A. K., & Misra, M. (2014). Analysis of porous electrospun fibers from poly(L-lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. ACS Sustainable Chemistry and Engineering, 2(8), 1976–1982.

    Article  CAS  Google Scholar 

  • Wang, Q., Sasaki, H., & Razali, A. K. (1989). Properties of fast growing timbers from plantation thinning in Sabah. Wood Research and Technical Note, 25(1), 45–51.

    Google Scholar 

  • Yamashita, N., Ohta, S., & Hardjono, A. (2008). Soil changes induced by Acacia mangium plantation establishment: comparison with secondary forest and imperata cylindrica grassland soils in South Sumatra, Indonesia. Forest Ecology and Management, 254(2), 362–370.

    Article  Google Scholar 

  • Yang, L., Liu, N., Ren, H., & Wang, J. (2009). Facilitation by two exotic Acacia: Acacia auriculiformis and Acacia mangium as nurse plants in South China. Forest Ecology and Management, 257(8), 1786–1793.

    Article  Google Scholar 

  • Yoonessi, M., Toghiani, H., Kingery, W. L., & Pittman, C. U., Jr. (2004). Preparation, characterization, and properties of exfoliated/delaminated organically modified clay/dicyclopentadiene resin nanocomposites. Macromolecules, 37(7), 2511–2518.

    Article  CAS  Google Scholar 

  • Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Advance Polymer Technology, 30(2), 67–79.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to Universiti Malaysia Sarawak and Swinburne University of Technology Sarawak Campus for the collaboration efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Rezaur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nyuk Khui, P.L., Rahman, M.R., Hamdan, S., Bakri, M.K.B., Jayamani, E., Kakar, A. (2019). Effect of Nano-enhancement on Acacia Wood Bio-composites. In: Rahman, M. (eds) Acacia Wood Bio-composites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29627-8_9

Download citation

Publish with us

Policies and ethics