Skip to main content

Introducing Knowledge Graphs to Decision Support Systems Design

  • Conference paper
  • First Online:
Book cover Information Systems: Research, Development, Applications, Education (SIGSAND/PLAIS 2019)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 359))

Included in the following conference series:

Abstract

Recent progress in cognitive technologies has driven decision support system (DSS) development in more complex directions. One of the main challenges in efficient DSS design is knowledge acquisition, especially in complicated and uncertain decision contexts. The more knowledge available to the system, the better decisions can be generated by a DSS. Representation of knowledge plays an important role in finding solutions to problems. With advances in the Semantic Web, knowledge can be represented in structured formats such as ontologies, which ease search and reasoning tasks. However, new data cannot be easily integrated nor updated in ontologies in real-time. Consequently, knowledge graphs (KGs) have emerged as a dynamic, scalable and domain independent form of knowledge representation. This paper explores how KGs can enhance the decision-making process in DSSs. Moreover, the paper presents a framework that may facilitate the integration of KGs into the DSS design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The figure was generated using NEO4j sandbox.

References

  1. Keen, P.G.: Decision support systems: a research perspective. In: Decision Support Systems: Issues and Challenges: Proceedings of an International Task Force Meeting (1980)

    Google Scholar 

  2. Tester, J.W., et al.: The future of geothermal energy. In: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century, Massachusetts Institute of Technology, Cambridge, vol. 372 (2006)

    Google Scholar 

  3. Spender, J.C., Grant, R.M.: Knowledge and the firm: overview. Strateg. Manag. J. 17(S2), 5–9 (1996)

    Article  Google Scholar 

  4. Damodaran, L., Olphert, W.: Barriers and facilitators to the use of knowledge management systems. Behav. Inf. Technol. 19(6), 405–413 (2000)

    Article  Google Scholar 

  5. Sagalowicz, D.: Using personal data bases for decision support. In: IIASA Proceedings Series (1976)

    Google Scholar 

  6. Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.): ESWC 2014. LNCS, vol. 8465. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07443-6

    Book  Google Scholar 

  7. Lan, M., Xu, J., Gao, W.: Ontology feature extraction via vector learning algorithm and applied to similarity measuring and ontology mapping. IAENG Int. J. Comput. Sci. 43(1), 10–19 (2016)

    Google Scholar 

  8. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum. Comput. Stud. 43(5–6), 907–928 (1995)

    Article  Google Scholar 

  9. Schulz, S., et al.: Strengths and limitations of formal ontologies in the biomedical domain. Revista electronica de comunicacao, informacao inovacao em saude: RECIIS 3(1), 31 (2009)

    Google Scholar 

  10. Pfaff, M., Neubig, S., Krcmar, H.: Ontology for semantic data integration in the domain of IT benchmarking. J. Data Seman. 7(1), 29–46 (2018)

    Article  Google Scholar 

  11. Galkin, M., Auer, S., Scerri, S.: Enterprise knowledge graphs: a backbone of linked enterprise data. In: 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI). IEEE (2016)

    Google Scholar 

  12. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Seman. Web 8(3), 489–508 (2017)

    Article  Google Scholar 

  13. Gomez-Perez, J.M., Pan, J.Z., Vetere, G., Wu, H.: Enterprise knowledge graph: an introduction. In: Pan, J., Vetere, G., Gomez-Perez, J., Wu, H. (eds.) Exploiting Linked Data and Knowledge Graphs in Large Organisations, pp. 1–14. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45654-6_1

    Chapter  Google Scholar 

  14. Zaveri, A., et al.: Quality assessment for linked data: a survey. Seman. Web 7(1), 63–93 (2016)

    Article  Google Scholar 

  15. Singh, M., et al.: KNADIA: enterprise KNowledge Assisted DIAlogue systems using deep learning. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE (2018)

    Google Scholar 

  16. Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. In: SEMANTiCS (Posters, Demos, SuCCESS), vol. 48 (2016)

    Google Scholar 

  17. Hong, S., Park, N., Chakraborty, T., Kang, H., Kwon, S.: PAGE: answering graph pattern queries via knowledge graph embedding. In: Chin, F.Y.L., Chen, C.L.P., Khan, L., Lee, K., Zhang, L.-J. (eds.) BIGDATA 2018. LNCS, vol. 10968, pp. 87–99. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94301-5_7

    Chapter  Google Scholar 

  18. Nishioka, C., Scherp, A.: Information-theoretic analysis of entity dynamics on the linked open data cloud. In: CEUR Workshop Proceedings. CEUR Workshop Proceedings (2016)

    Google Scholar 

  19. Pernelle, N., et al.: RDF data evolution: efficient detection and semantic representation of changes. In: Semantic Systems-SEMANTiCS2016, 4 p. (2016)

    Google Scholar 

  20. Bordes, A., Gabrilovich, E.: Constructing and mining web-scale knowledge graphs: KDD 2014 tutorial. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2014)

    Google Scholar 

  21. Paulheim, H., Bizer, C.: Improving the quality of linked data using statistical distributions. Int. J. Seman. Web Inf. Syst. (IJSWIS) 10(2), 63–86 (2014)

    Article  Google Scholar 

  22. Rashid, M.R.A., et al.: Completeness and consistency analysis for evolving knowledge bases. J. Web Seman. 54, 48–71 (2019)

    Article  Google Scholar 

  23. Paulheim, H., Stuckenschmidt, H.: Fast approximate a-box consistency checking using machine learning. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 135–150. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3_9

    Chapter  Google Scholar 

  24. Färber, M., et al.: Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Seman. Web 9(1), 77–129 (2018)

    Article  Google Scholar 

  25. Ruan, T., Xue, L., Wang, H., Hu, F., Zhao, L., Ding, J.: Building and exploring an enterprise knowledge graph for investment analysis. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 418–436. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_35

    Chapter  Google Scholar 

  26. Liu, J., Lu, Z., Du, W.: Combining enterprise knowledge graph and news sentiment analysis for stock price prediction. In: Proceedings of the 52nd Hawaii International Conference on System Sciences (2019)

    Google Scholar 

  27. Gerber, D., Hellmann, S., Bühmann, L., Soru, T., Usbeck, R., Ngonga Ngomo, A.-C.: Real-time RDF extraction from unstructured data streams. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 135–150. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_9

    Chapter  Google Scholar 

  28. Yahya, M., et al.: Natural language questions for the web of data. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, Korea, pp. 379–390. Association for Computational Linguistics (2012)

    Google Scholar 

  29. Shi, B., Weninger, T.: ProjE: embedding projection for knowledge graph completion. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  30. Bhatia, S., Vishwakarma, H.: Know thy neighbors, and more!: studying the role of context in entity recommendation. In: Proceedings of the 29th on Hypertext and Social Media. ACM (2018)

    Google Scholar 

  31. Luconi, F.L., Malone, T.W., Morton, M.S.S.: Expert systems: the next challenge for managers. Sloan Manag. Rev. 27(4), 3–14 (1986)

    Google Scholar 

  32. Wang, Q., et al.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  33. Shi, L., et al., Semantic health knowledge graph: semantic integration of heterogeneous medical knowledge and services. BioMed Res. Int. 2017(4), 1–12 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samaa Elnagar or Heinz Roland Weistroffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elnagar, S., Weistroffer, H.R. (2019). Introducing Knowledge Graphs to Decision Support Systems Design. In: Wrycza, S., Maślankowski, J. (eds) Information Systems: Research, Development, Applications, Education. SIGSAND/PLAIS 2019. Lecture Notes in Business Information Processing, vol 359. Springer, Cham. https://doi.org/10.1007/978-3-030-29608-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29608-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29607-0

  • Online ISBN: 978-3-030-29608-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics