We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Advances in Dixmier traces and applications

  • Chapter
  • First Online:
Book cover Advances in Noncommutative Geometry

Abstract

Jacques Dixmier constructed a trace in the 1960s on an ideal larger than the trace class. In 1988 Alain Connes developed Dixmier’s trace and used it centrally in noncommutative geometry, extending classical Yang-Mills actions, the noncommutative residue of Adler, Manin, Wodzicki and Guillemin, and integration of differential forms.

Independent of Dixmier’s construction and Connes development, Albrecht Pietsch identified a bijective correspondence between traces on two-sided ideals and shift invariant functionals in the 1980s. At the same time Kalton and Figiel identified the commutator subspace of trace class operators, showing that there exist traces different from ‘the trace’ on the trace class ideal. The commutator approach was subsequently developed in the 1990s for arbitrary ideals by Dykema, Figiel, Weiss and Wodzicki.

We survey recent advances in singular traces, of which Dixmier’s trace is an example, based on the approaches of Dixmier, Connes, Pietsch, Kalton, Figiel and the approach of Dykema, Figiel, Weiss and Wodzicki. The results include the bijective association of positive traces with Banach limits, the characterisation of Dixmier traces within this bijection, Lidskii and Fredholm formulations of singular traces as the summation of divergent sums of eigenvalues and expectation values, and their calculation using zeta function residues, heat semigroup asymptotics and symbols of integral operators.

There are basic implications of these advances for users in noncommutative geometry such as the redundancy of the requirement for invariance properties of the extended limit used in Dixmier’s trace, the capacity to calculate traces for resolvents of non-smooth partial differential operators and the characterisation of independence from which singular trace is used in terms of the rate of log divergence of the series of energy expectation values—a more physically suitable criteria to impose, or to test the satisfaction of, than series of generally intractable singular values of products of operators. We also survey recent applications in noncommutative geometry such as calculation of traces using noncommutative symbols, that Connes’ Hochschild Character formula holds for any trace, and extensions of Connes’ results for quantum differentiability for Euclidean space and the noncommutative torus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Symmetric sequence spaces are also called rearrangement invariant sequence spaces. The reader of the literature should be warned that some texts refer to rearrangement invariant spaces solid under Hardy-Littlewood submajorisation as symmetric spaces. The same object in other texts is referred to as fully symmetric spaces.

  2. 2.

    Z(E) is a linear subspace of E and the algebraic dual of EZ(E) admits a functional \(\tilde {f}\) such that \(\tilde {f}([x]) \neq 0\). Let f be the extension of \(\tilde {f}\) to E vanishing on Z(E).

  3. 3.

    One of the strongest invariances generally considered are traces Trω where ω = ω ∘ M is an extended limit invariant under M. This set of traces are characterised by what might be considered ‘infinitely’ factorisable Banach limits where θ = θ ∘ C is a Banach limit invariant under C [203].

  4. 4.

    That this is a bijective correspondence follows from using the identification of Dixmier traces with fully symmetric functionals in [122].

  5. 5.

    The function (s − 1)Tr(BA s) is bounded for s ≥ 1 if and only if \(0 \leq A \in \mathcal {M}_{1,\infty }\) [28, Theorem 4.5].

  6. 6.

    Note that this function is not bounded when \(0 \leq A \in \mathcal {M}_{1,\infty }\) belongs to the dual of the Macaev ideal. The logarithmic mean is applied to obtain a bounded function in this case [28, 198].

  7. 7.

    For example, the statement 1. (a) ⇔ (b) in Theorem 4.2, that

    $$\displaystyle \begin{aligned}\mathrm{Tr}_\omega(A) = c, \quad c \text{ const.}, A \in \mathcal{L}_{1,\infty} \end{aligned}$$

    is equivalent to

    $$\displaystyle \begin{aligned}\lim_{n\to \infty} \frac 1{\log(n+1)} \sum_{k=0}^n \lambda(k,A)= c \end{aligned}$$

    for an eigenvalue sequence λ(n, A), n ≥ 0, is false on \(\mathcal {M}_{1,\infty }\). It is true when \(0 \leq A \in \mathcal {M}_{1,\infty }\) [147], but false for arbitrary operators in the ideal [199, Corollary 11]. The maximal ideal on which the statement 1. (a) ⇔ (b) remains true has been identified [199, p. 3058]—it is not \(\mathcal {L}_{1,\infty }\).

  8. 8.

    A spectral triple \((\mathcal {A},D,H)\) consists of a ∗-algebra \(\mathcal {A} \subset \mathcal {L}(H)\) and a self-adjoint operator D : Dom(D) → H such that \([D,a] \in \mathcal {L}(H)\). Connes and Moscovici defined the dimension spectrum [55, II.1]. Let Sd = ∪BSd(B) where B belongs to the algebra generated by a, [D, a], \(a \in \mathcal {A}\) and \(\mathrm {Sd}(B) \subset \mathbb {C}\) is the set such that Tr(B|D|z) is analytic on \(\mathbb {C} \setminus \mathrm {Sd}(B)\). It is usually assumed that Sd is a discrete set, but not that poles with imaginary components should be excluded.

  9. 9.

    For pseudodifferential operators this can be weakened to M ψB = B; this implies \(BM_\psi - B \in \mathcal {L}_1\) [150, Example 10.2.23], which is sufficient. Throughout this section the condition BM ψ = B on \(B \in \mathcal {L}(L_2(\mathbb {R}^d))\) can be replaced by \(BM_\psi - B \in \mathcal {L}_1\).

  10. 10.

    Even though \(\Psi _{\mathrm {cl}}^0\) is a -subalgebra of bounded operators on \(L_2(\mathbb {R}^d)\), the principal symbol map on \(\Psi _{\mathrm {cl}}^0\) cannot be defined directly with π 0. There are operators in \(\Psi _{\mathrm {cl}}^0\) whose commutators are not compact operators on \(L_2(\mathbb {R}^d)\) [57, Lemma 10.5]. Cordes considers several subalgebras of \(\Psi ^0_{\mathrm {cl}}\) with compact commutators, the maximal one being the -subalgebra of operators B whose total symbol \(\sigma (B)(x,\xi ) \in C_b^\infty (\mathbb {R}^d \times \mathbb {R}^d)\) has all derivatives in \(C_0^\infty (\mathbb {R}^d \times \mathbb {R}^d)\) [57, p. 133], and the -subalgebra of operators B whose total symbol satisfy [58] [204, Chap. IV]

    $$\displaystyle \begin{aligned}\partial^\alpha_x \partial^\beta_\xi \sigma(B)(x,\xi) = O((1+|x|{}^2)^{-|\alpha|}) O((1+|\xi|{}^2)^{-|\beta|}), \quad x,\xi \in \mathbb{R}^d . \end{aligned}$$
  11. 11.

    As one of the algebras is commutative, it is in particular nuclear and all C -norms on \(\mathcal {A}_1\otimes _{\mathrm {alg}}\mathcal {A}_2\) coincide.

  12. 12.

    S is the subspace of measurable functions \(f \in L_0(\mathbb {R}^d)\) with a distribution function

    $$\displaystyle \begin{aligned}n_f(\lambda) = m( \{ s \in \mathbb{R}^d : |f(s)| > \lambda \} ) , \quad \lambda > 0 , m\text{ Lebesgue measure,} \end{aligned}$$

    that is finite as λ →. Equivalently, the function μ(s, f), s > 0 is finite valued.

References

  1. Thomas Ackermann, A note on the Wodzicki residue, Journal of Geometry and Physics 20 (1996), no. 4, 404–406.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Adler, On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-de Vries type equations, Invent. Math. 50 (1979), no. 3, 219–248. MR 520927 (80i:58026)

    Article  MathSciNet  MATH  Google Scholar 

  3. P. M. Alberti and R. Matthes, Noncommutative geometry and the standard model of elementary particle physics, Lecture Notes in Phys., vol. 596, ch. Connes’ trace formula and Dirac realisation of Maxwell and Yang-Mills action, pp. 40–74, Springer, Berlin; New-York, 2002.

    Chapter  MATH  Google Scholar 

  4. S. Albeverio, D. Guido, A. Ponosov, and S. Scarlatti, Singular traces and compact operators, J. Funct. Anal. 137 (1996), 281–302.

    Article  MathSciNet  MATH  Google Scholar 

  5. Clara L. Aldana, Maxim Braverman, Bruno Iochum, and Carolina Neira Jiménez (eds.), Analysis, geometry, and quantum field theory: international conference in honor of Steve Rosenberg’s 60th birthday, September 26–30, 2011, University of Potsdam, Potsdam, Germany, Contemporary Mathematics, vol. 584, American Mathematical Society, 2012.

    Google Scholar 

  6. Egor Alekhno, Evgenii Semenov, Fedor Sukochev, and Alexandr Usachev, Invariant Banach limits and their extreme points, Studia Math. 242 (2018), no. 1, 79–107. MR 3766571

    Article  MathSciNet  MATH  Google Scholar 

  7. Joel Anderson, Commutators in ideals of trace class operators ii, Indiana University Mathematics Journal 35 (1986), no. 2, 373–378 (eng).

    Google Scholar 

  8. Joel Anderson and L. N. Vaserstein, Commutators in ideals of trace class operators, Indiana University Mathematics Journal 35 (1986), no. 2, 345–372 (eng).

    Google Scholar 

  9. Tsuyoshi Ando and Fumio Hiai, Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra and its Applications 197–198 (1994), 113–131.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Arsu, On Schatten-von Neumann class properties of pseudodifferential operators. The Cordes-Kato method, J. Operator Theory 59 (2008), no. 1, 81–114. MR 2404466 (2009e:35303)

    Google Scholar 

  11. S. Banach, Théorie des opérations linéaires, Éditions Jacques Gabay, Sceaux, 1993, Reprint of the 1932 original. MR 1357166 (97d:01035)

    Google Scholar 

  12. Martin T. Barlow and Jun Kigami, Localized eigenfunctions of the Laplacian on p.c.f. self-similar sets, J. London Math. Soc. 56 (1997), no. 2, 320–332.

    Article  MathSciNet  MATH  Google Scholar 

  13. Richard Beals, Characterization of pseudodifferential operators and applications, Duke Math. J. 44 (1977), no. 1, 45–57. MR 0435933

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Benameur and T. Fack, Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras, Adv. Math. 199 (2006), no. 1, 29–87. MR 2186918 (2006m:58035)

    Article  MathSciNet  MATH  Google Scholar 

  15. Marcel Berger, Riemannian geometry during the second half of the twentieth century, University Lecture Series, vol. 17, American Mathematical Society, Providence, R.I., 2000.

    MATH  Google Scholar 

  16. Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. MR 1215720 (94e:58130)

    Google Scholar 

  17. M. Birman, G. Karadzhov, and M. Solomyak, Boundedness conditions and spectrum estimates for the operatorsb(X)a(D) and their analogs, Estimates and asymptotics for discrete spectra of integral and differential equations (Leningrad, 1989–90), Adv. Soviet Math., vol. 7, Amer. Math. Soc., Providence, RI, 1991, pp. 85–106. MR 1306510 (95g:47075)

    Google Scholar 

  18. M. Birman and M. Solomyak, Estimates of singular numbers of integral operators, Russ. Math. Surv. 32 (1977), no. 1, 15–89 (English).

    Article  MathSciNet  MATH  Google Scholar 

  19. _________ , Estimates for the difference of fractional powers of selfadjoint operators under unbounded perturbations, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 178 (1989), no. Issled. Linein. Oper. Teorii Funktsii. 18, 120–145, 185. MR 1037767 (91d:47006)

    Google Scholar 

  20. Ola Bratteli and Derek W. Robinson, Operator algebras and quantum-statistical mechanics. II, Springer-Verlag, New York, 1981. MR 611508 (82k:82013)

    Google Scholar 

  21. Arlen Brown, Paul R. Halmos, and Carl Pearcy, Commutators of operators on Hilbert space, Canad. J. Math. 17 (1965), 695–708. MR 0203460 (34 #3311)

    Google Scholar 

  22. J. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. (2) 42 (1941), 839–873. MR 0005790 (3,208c)

    Google Scholar 

  23. A. Carey, V. Gayral, A. Rennie, and F. Sukochev, Integration on locally compact noncommutative spaces, J. Funct. Anal. 263 (2012), no. 2, 383–414. MR 2923417

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Carey, J. Phillips, A. Rennie, and F. Sukochev, The Hochschild class of the Chern character for semifinite spectral triples, J. Funct. Anal. 213 (2004), no. 1, 111–153. MR 2069783 (2005d:58050)

    Article  MathSciNet  MATH  Google Scholar 

  25. _________ , The local index formula in semifinite von Neumann algebras. I. Spectral flow, Adv. Math. 202 (2006), no. 2, 451–516. MR 2222358 (2007a:19003)

    Google Scholar 

  26. A. Carey, J. Phillips, and F. Sukochev, On unboundedp-summable Fredholm modules, Adv. Math. 151 (2000), no. 2, 140–163. MR 1758245 (2001h:46107)

    Article  MathSciNet  MATH  Google Scholar 

  27. _________ , Spectral flow and Dixmier traces, Adv. Math. 173 (2003), no. 1, 68–113. MR 1954456 (2004e:58049)

    Google Scholar 

  28. A. Carey, A. Rennie, A. Sedaev, and F. Sukochev, The Dixmier trace and asymptotics of zeta functions, J. Funct. Anal. 249 (2007), no. 2, 253–283. MR 2345333 (2010i:46095)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Carey and F. Sukochev, Measurable operators and the asymptotics of heat kernels and zeta functions, J. Funct. Anal. 262 (2012), no. 10, 4582–4599. MR 2900479

    Article  MathSciNet  MATH  Google Scholar 

  30. Alan Carey, Adam Rennie, Fedor Sukochev, and Dmitriy Zanin, Universal measurability and the Hochschild class of the Chern character, J. Spectr. Theory 6 (2016), no. 1, 1–41. MR 3484376

    Article  MathSciNet  MATH  Google Scholar 

  31. Alan Carey and Fedor Sukochev, Dixmier traces and some applications in non-commutative geometry, Russ. Math. Surv. 61 (2006), 1039–1099.

    Article  MATH  Google Scholar 

  32. E. Cartan, Les systèmes differentiels extérieurs et leur applications géométriques, Actualités Scientifiques et Industrielles, vol. 994, Hermann, Paris, 1971.

    Google Scholar 

  33. Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999, With an appendix by David A. Buchsbaum, Reprint of the 1956 original. MR 1731415 (2000h:18022)

    Google Scholar 

  34. A. Chamseddine and A. Connes, The spectral action principle, Comm. Math. Phys. 186 (1997), no. 3, 731–750. MR 1463819 (99c:58010)

    Article  MathSciNet  MATH  Google Scholar 

  35. I. Chavel, Riemannian geometry: A modern introduction, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK, 2006.

    Book  MATH  Google Scholar 

  36. A. Connes, C algèbres et géométrie différentielle, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 13, A599–A604. MR 572645 (81c:46053)

    Google Scholar 

  37. _________ , Introduction to noncommutative differential geometry, Workshop Bonn 1984 (Bonn, 1984), Lecture Notes in Math., vol. 1111, Springer, Berlin, 1985, pp. 3–16. MR 797413 (87e:58193)

    Google Scholar 

  38. _________ , The action functional in noncommutative geometry, Comm. Math. Phys. 117 (1988), no. 4, 673–683. MR 953826 (91b:58246)

    Google Scholar 

  39. A Connes, Trace de Dixmier, modules de Fredholm et geometrie Riemannienne, Nuclear Physics B - Proceedings Supplements 5 (1988), no. 2, 65 – 70.

    Article  MATH  Google Scholar 

  40. A. Connes, Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994. MR 1303779 (95j:46063)

    Google Scholar 

  41. _________ , Geometry from the spectral point of view, Lett. Math. Phys. 34 (1995), no. 3, 203–238. MR 1345552 (96j:46074)

    Google Scholar 

  42. _________ , Gravity coupled with matter and the foundation of non-commutative geometry, Comm. Math. Phys. 182 (1996), no. 1, 155–176. MR 1441908 (98f:58024)

    Google Scholar 

  43. _________ , On the foundations of noncommutative geometry, The unity of mathematics, Progr. Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, pp. 173–204. MR 2181806

    Google Scholar 

  44. A. Connes, E. McDonald, F. Sukochev, and D. Zanin, Conformal trace theorem for Julia sets of quadratic polynomials, Ergodic Theory and Dynamical Systems (2017), 1–26.

    Google Scholar 

  45. A. Connes and H. Moscovici, The local index formula in noncommutative geometry, Geom. Funct. Anal. 5 (1995), no. 2, 174–243. MR 1334867 (96e:58149)

    Google Scholar 

  46. A. Connes and M. Rieffel, Yang-Mills for noncommutative two-tori, Operator algebras and mathematical physics (Iowa City, Iowa, 1985), Contemp. Math., vol. 62, Amer. Math. Soc., Providence, RI, 1987, pp. 237–266. MR 878383 (88b:58033)

    Google Scholar 

  47. Alain Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. (1985), no. 62, 257–360. MR 823176 (87i:58162)

    Google Scholar 

  48. _________ , Cyclic cohomology and noncommutative differential geometry, Géométrie différentielle (Paris, 1986), Travaux en Cours, vol. 33, Hermann, Paris, 1988, pp. 33–50. MR 955850 (89i:58138)

    Google Scholar 

  49. _________ , Noncommutative geometry and reality, J. Math. Phys. 36 (1995), no. 11, 6194–6231. MR 1355905 (96g:58014)

    Google Scholar 

  50. _________ , Noncommutative differential geometry and the structure of space-time, The geometric universe (Oxford, 1996), Oxford Univ. Press, Oxford, 1998, pp. 49–80. MR 1634504 (99h:58013c)

    Google Scholar 

  51. _________ , Noncommutative geometry: the spectral aspect, Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, pp. 643–686. MR 1616407 (2000d:58042)

    Google Scholar 

  52. _________ , Noncommutative geometry—year 2000, Geom. Funct. Anal. (2000), no. Special Volume, Part II, 481–559, GAFA 2000 (Tel Aviv, 1999). MR 1826266 (2003g:58010)

    Google Scholar 

  53. _________ , A short survey of noncommutative geometry, J. Math. Phys. 41 (2000), no. 6, 3832–3866. MR 1768641 (2001m:58016)

    Google Scholar 

  54. Alain Connes and Henri Moscovici, Transgression du caractère de Chern et cohomologie cyclique, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 18, 913–918. MR 873393 (88c:58006)

    Google Scholar 

  55. Alain Connes and Henri Moscovici, The Local Index Formula in Noncommutative Geometry, Geometric and Functional Analysis 5 (1995), 174–243.

    Article  MathSciNet  MATH  Google Scholar 

  56. Alain Connes, Dennis Sullivan, and Nicolas Teleman, Quasiconformal mappings, operators on Hilbert space, and local formulae for characteristic classes, Topology 33 (1994), no. 4, 663–681. MR MR1293305 (95g:58232)

    Article  MathSciNet  MATH  Google Scholar 

  57. H. O. Cordes, Elliptic pseudodifferential operators—an abstract theory, Lecture Notes in Mathematics, vol. 756, Springer, Berlin, 1979. MR 551619

    Google Scholar 

  58. _________ , On pseudo-differential operators and smoothness of special lie-group representations, manuscripta mathematica 28 (1979), no. 1, 51–69.

    Google Scholar 

  59. H. O. Cordes and E. A. Herman, Gel’fand theory of pseudo differential operators, American Journal of Mathematics 90 (1968), no. 3, 681–717.

    Article  MathSciNet  MATH  Google Scholar 

  60. M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. of Math. (2) 106 (1977), no. 1, 93–100. MR 0473576 (57 #13242)

    Google Scholar 

  61. J. Dixmier, Existence de traces non normales, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A1107–A1108. MR 0196508 (33 #4695)

    Google Scholar 

  62. P. Dodds, B. de Pagter, A. Sedaev, E. Semenov, and F. Sukochev, Singular symmetric functionals, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 290 (2002), no. Issled. po Linein. Oper. i Teor. Funkts. 30, 42–71, 178 (Russian, with English and Russian summaries). MR 1942537 (2004a:46031)

    Google Scholar 

  63. _________ , Singular symmetric functionals and Banach limits with additional invariance properties, Izv. Ross. Akad. Nauk Ser. Mat. 67 (2003), no. 6, 111–136. MR 2032092 (2005a:46061)

    Google Scholar 

  64. P. Dodds, B. de Pagter, A. Sedaev, E. Semenov, and F. Sukochev, Singular symmetric functionals, J. Math. Sci. 2 (2004), 4867–4885.

    Article  MathSciNet  MATH  Google Scholar 

  65. P. Dodds, B. de Pagter, E. Semenov, and F. Sukochev, Symmetric functionals and singular traces, Positivity 2 (1998), no. 1, 47–75. MR 1655756 (99m:46072)

    Article  MathSciNet  Google Scholar 

  66. K. Dykema, T. Figiel, G. Weiss, and M. Wodzicki, Commutator structure of operator ideals, Adv. Math. 185 (2004), no. 1, 1–79. MR 2058779 (2005f:47149)

    Article  MathSciNet  MATH  Google Scholar 

  67. K. Dykema and N. Kalton, Spectral characterization of sums of commutators. II, J. Reine Angew. Math. 504 (1998), 127–137. MR 1656763 (99g:47079)

    Google Scholar 

  68. K. Dykema, G. Weiss, and M. Wodzicki, Unitarily invariant trace extensions beyond the trace class, Complex analysis and related topics (Cuernavaca, 1996), Oper. Theory Adv. Appl., vol. 114, Birkhäuser, Basel, 2000, pp. 59–65. MR 1748001 (2001c:47025)

    Chapter  Google Scholar 

  69. Alexander Dynin, Review: H. O. Cordes, Spectral theory of linear differential operators and comparison algebras, Bull. Amer. Math. Soc. (N.S.) 21 (1989), no. 1, 105–108.

    Article  MathSciNet  Google Scholar 

  70. Thierry Fack, Sums of commutators in non-commutative Banach function spaces, J. Funct. Anal. 207 (2004), no. 2, 358–398. MR 2032994 (2005e:46123)

    Google Scholar 

  71. Thierry Fack, Singular Traces in N.C.G., Educational Week on Noncommutative Integration, Thomas Stieltjes Institute for Mathematics, http://www.math.leidenuniv.nl/~mdejeu/NoncomIntWeek_2008_Fack_singular_traces_in_NCG.pdf, June 2008.

  72. Peng Fan and Che Kao Fong, Which operators are the self-commutators of compact operators?, Proceedings of the American Mathematical Society 80 (1980), no. 1, 58–60 (eng).

    Article  MathSciNet  MATH  Google Scholar 

  73. Farzad Fathizadeh and Masoud Khalkhali, Weyl’s law and connes’ trace theorem for noncommutative two tori, Letters in Mathematical Physics 103 (2013), no. 1, 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  74. Farzad Fathizadeh and M. W. Wong, Noncommutative residues for pseudo-differential operators on the noncommutative two-torus, Journal of Pseudo-Differential Operators and Applications 2 (2011), no. 3, 289–302.

    Article  MathSciNet  MATH  Google Scholar 

  75. W. Feller, An introduction to probability theory and its applications. Vol. II., Second edition, John Wiley & Sons Inc., New York, 1971.

    Google Scholar 

  76. T. Figiel and N. Kalton, Symmetric linear functionals on function spaces, Function spaces, interpolation theory and related topics (Lund, 2000), de Gruyter, Berlin, 2002, pp. 311–332. MR 1943290 (2003i:46028)

    Google Scholar 

  77. Maria Fragoulopoulou, Topological algebras with involution, North-Holland Mathematics Studies, vol. 200, North-Holland, 2005.

    Google Scholar 

  78. Rupert L. Frank, Cwikel’s theorem and the CLR inequality, J. Spectr. Theory 4 (2014), no. 1, 1–21. MR 3181383

    Article  MathSciNet  MATH  Google Scholar 

  79. M. Fukushima, Dirichlet forms, diffusion processes and spectral dimensions for nested fractals, Ideas and methods in mathematical analysis, stochastics, and applications (Oslo, 1988), Cambridge Univ. Press, Cambridge, 1992, pp. 151–161. MR 1190496

    Google Scholar 

  80. M. Fukushima and T. Shima, On a spectral analysis for the Sierpinski gasket, Potential Analysis 1 (1992), no. 1, 1–35.

    Article  MathSciNet  MATH  Google Scholar 

  81. V. Gayral, J. Gracia-Bondía, B. Iochum, T. Schücker, and J. Várilly, Moyal planes are spectral triples, Comm. Math. Phys. 246 (2004), no. 3, 569–623. MR 2053945 (2005f:58045)

    Google Scholar 

  82. V. Gayral, B. Iochum, and J. Várilly, Dixmier traces on noncompact isospectral deformations, J. Funct. Anal. 237 (2006), no. 2, 507–539. MR 2230348 (2007g:58029)

    Article  MathSciNet  MATH  Google Scholar 

  83. Victor Gayral and Fedor Sukochev, Dixmier traces and extrapolation description of noncommutative Lorentz spaces, Journal of Functional Analysis 266 (2014), no. 10, 6256 – 6317.

    Article  MathSciNet  MATH  Google Scholar 

  84. Peter B. Gilkey, The spectral geometry of a Riemannian manifold, J. Differential Geom. 10 (1975), no. 4, 601–618 (eng).

    Article  MathSciNet  MATH  Google Scholar 

  85. _________ , Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Mathematics Lecture Series, vol. 11, Publish or Perish Inc., Wilmington, DE, 1984. MR MR783634 (86j:58144)

    Google Scholar 

  86. _________ , Invariance theory, the heat equation, and the Atiyah-Singer index theorem, second ed., Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1396308 (98b:58156)

    Google Scholar 

  87. I. C. Gohberg, On the theory of multidimensional singular integral equations, Soviet Math. Dokl. 1 (1960), 960–963. MR 0124704

    Google Scholar 

  88. I. C. Gohberg and M. G. Kreı̆n, Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. MR 0246142

    Google Scholar 

  89. Adrian M. Gonzalez-Perez, Marius Junge, and Javier Parcet, Singular integrals in quantum Euclidean spaces, Mem. Amer. Math. Soc., to appear.

    Google Scholar 

  90. J.. Gracia-Bondía and J. Várilly, Algebras of distributions suitable for phase-space quantum mechanics. I, J. Math. Phys. 29 (1988), no. 4, 869–879. MR 940351

    Article  MathSciNet  MATH  Google Scholar 

  91. J. Gracia-Bondía, J. Várilly, and H. Figueroa, Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Boston Inc., Boston, MA, 2001. MR 1789831 (2001h:58038)

    Google Scholar 

  92. H. Groenewold, On the principles of elementary quantum mechanics, Physica 12 (1946), 405–460. MR 0018562 (8,301a)

    Article  MathSciNet  MATH  Google Scholar 

  93. A. Grossmann, G. Loupias, and E. M. Stein, An algebra of pseudo-differential operators and quantum mechanics in phase space, Annales de l’institut Fourier 18 (1968), no. 2, 343–368 (eng).

    Article  MathSciNet  MATH  Google Scholar 

  94. Grubb, Gerd Functional calculus of pseudodifferential boundary problems. Second edition. Progress in Mathematics, 65. Birkhäuser Boston, Inc., Boston, MA, 1996. x+522 pp.

    Google Scholar 

  95. D. Guido and T. Isola, Dimensions and singular traces for spectral triples, with applications to fractals, J. Funct. Anal. 203 (2003), no. 2, 362–400. MR 2003353 (2005b:58038)

    Article  MathSciNet  MATH  Google Scholar 

  96. Daniele Guido and Tommaso Isola, On the domain of singular traces, Internat. J. Math. 13 (2002), no. 6, 667–674. MR 1915524 (2003h:46104)

    Article  MathSciNet  MATH  Google Scholar 

  97. Victor Guillemin, A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues, Adv. Math. 55 (1985), no. 2, 131–160.

    Article  MathSciNet  MATH  Google Scholar 

  98. Paul R. Halmos, Commutators of operators, Amer. J. Math. 74 (1952), 237–240.

    Article  MathSciNet  Google Scholar 

  99. Paul R. Halmos, Commutators of operators. II, Amer. J. Math. 76 (1954), 191–198. MR 0059484 (15,538d)

    Google Scholar 

  100. _________ , Commutators of operators, pp. 126–134, Springer US, New York, NY, 1974.

    Google Scholar 

  101. B. M. Hambly, Asymptotics for functions associated with heat flow on the Sierpinski carpet, Canadian Journal of Mathematics 63 (2011), no. 1, 153–180 (eng).

    Article  MathSciNet  MATH  Google Scholar 

  102. G. H. Hardy, Divergent Series, Oxford University Press, Oxford, UK, 1949. MR 0030620 (11,25a)

    Google Scholar 

  103. S. W. Hawking, Zeta function regularization of path integrals in curved spacetime, Comm. Math. Phys. 55 (1977), no. 2, 133–148.

    Article  MathSciNet  MATH  Google Scholar 

  104. E. Herman, The symbol of the algebra of singular integral operators, Journal of Mathematics and Mechanics 15 (1966), no. 1, 147–155.

    MathSciNet  MATH  Google Scholar 

  105. Joseph Hersch, Caractérisation variationnelle d’une somme de valeurs propres consécutives; généralisation d’inégalités de Pólya-Schiffer et de Weyl, C. R. Acad. Sci. Paris 252 (1961), 1714–1716. MR 0126065

    Google Scholar 

  106. _________ , Inégalités pour des valeurs propres consécutives de systèmes vibrants inhomogènes allant “en sens inverse” de celles de Pólya-Schiffer et de Weyl, C. R. Acad. Sci. Paris 252 (1961), 2496–2498. MR 0123908

    Google Scholar 

  107. Fumio Hiai, Log-majorizations and norm inequalities for exponential operators, Banach Center Publications 38 (1997), no. 1, 119–181 (eng).

    Article  MathSciNet  MATH  Google Scholar 

  108. Nigel Higson, The local index formula in noncommutative geometry, Contemporary developments in algebraic K-theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 443–536 (electronic). MR 2175637 (2006m:58039)

    Google Scholar 

  109. Nigel Higson, Meromorphic continuation of zeta functions associated to elliptic operators, Contemp. Math. 365 (2004), 129–142.

    Article  MathSciNet  MATH  Google Scholar 

  110. Reinhold Hubl, Traces of differential forms and Hochschild homology, Lecture Notes in Mathematics, vol. 1368, Springer-Verlag, Berlin, 1989 (eng).

    Book  MATH  Google Scholar 

  111. Dirk Hundertmark, On the number of bound states for Schrödinger operators with operator-valued potentials, Ark. Mat. 40 (2002), no. 1, 73–87. MR 1948887

    Article  MathSciNet  MATH  Google Scholar 

  112. Victor Ivrii, 100 years of Weyl’s law, Bulletin of Mathematical Sciences 6 (2016), no. 3, 379–452.

    Article  MathSciNet  MATH  Google Scholar 

  113. Kohn J. J. and Nirenberg L., An algebra of pseudo-differential operators, Comm. Pure Appl. Math. 18 (1965), 269–305.

    Article  MathSciNet  MATH  Google Scholar 

  114. Svante Janson and Thomas H. Wolff, Schatten classes and commutators of singular integral operators, Ark. Mat. 20 (1982), no. 2, 301–310.

    Article  MathSciNet  MATH  Google Scholar 

  115. V. Kaftal and G. Weiss, Traces on operator ideals and arithmetic means, J. Operator Theory 63 (2010), no. 1, 3–46. MR 2606881 (2011j:47223)

    Google Scholar 

  116. Naotaka Kajino, Log-periodic asymptotic expansion of the spectral partition function for self-similar sets, Comm. Math. Phys. 328 (2014), no. 3, 1341–1370.

    Article  MathSciNet  MATH  Google Scholar 

  117. S. Kakutani and M. Nakamura, Banach limits and the Čech compactification of a countable discrete set, Proc. Imp. Acad. Tokyo 19 (1943), 224–229. MR 0014587 (7,306g)

    Article  MathSciNet  MATH  Google Scholar 

  118. W. Kalau and M. Walze, Gravity, non-commutative geometry and the Wodzicki residue, Journal of Geometry and Physics 16 (1995), no. 4, 327 – 344.

    Article  MathSciNet  MATH  Google Scholar 

  119. N. Kalton, Unusual traces on operator ideals, Math. Nachr. 134 (1987), 119–130. MR 918672 (89a:47070)

    Article  MathSciNet  MATH  Google Scholar 

  120. _________ , Trace-class operators and commutators, J. Funct. Anal. 86 (1989), no. 1, 41–74. MR 1013933 (91d:47022)

    Google Scholar 

  121. _________ , Spectral characterization of sums of commutators. I, J. Reine Angew. Math. 504 (1998), 115–125. MR 1656767 (99g:47078)

    Google Scholar 

  122. N. Kalton, A. Sedaev, and F. Sukochev, Fully symmetric functionals on a Marcinkiewicz space are Dixmier traces, Adv. Math. 226 (2011), no. 4, 3540–3549. MR 2764897 (2012c:47057)

    Article  MathSciNet  MATH  Google Scholar 

  123. N. Kalton and F. Sukochev, Rearrangement-invariant functionals with applications to traces on symmetrically normed ideals, Canad. Math. Bull. 51 (2008), no. 1, 67–80. MR 2384740 (2009h:46123)

    Article  MathSciNet  MATH  Google Scholar 

  124. _________ , Symmetric norms and spaces of operators, J. Reine Angew. Math. 621 (2008), 81–121. MR 2431251 (2009i:46118)

    Google Scholar 

  125. Nigel Kalton, Steven Lord, Denis Potapov, and Fedor Sukochev, Traces of compact operators and the noncommutative residue, Adv. Math. 235 (2013), 1–55. MR 3010049

    Google Scholar 

  126. J. Karamata, Uber die hardy-littlewoodschen umkehrungen des abelschen stetigkeitssatzes, Mathematische Zeitschrift 32 (1930), no. 1, 319–320 (ger).

    Google Scholar 

  127. D. Kastler, The Dirac operator and gravitation, Comm. Math. Phys. 166 (1995), no. 3, 633–643. MR 1312438 (95j:58181)

    Article  MathSciNet  MATH  Google Scholar 

  128. Victor J. Katz, The history of Stokes’ theorem, Mathematics Magazine 52 (1979), no. 3, 146–156.

    Article  MathSciNet  MATH  Google Scholar 

  129. Masoud Khalkhali and Matilde Marcolli, An invitation to noncommutative geometry, World Scientific Publishing, Singapore, 2008.

    Book  MATH  Google Scholar 

  130. A. I. Khelemskii, Banach and locally convex algebras, Oxford Science Publications, Oxford University Press, Oxford, UK, 1993 (eng).

    Google Scholar 

  131. Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, UK, 2001.

    Book  MATH  Google Scholar 

  132. Jun Kigami and Michel L. Lapidus, Weyl’s problem for the spectral distribution of Laplacians on P.C.F. self-similar fractals, Comm. Math. Phys. 158 (1993), no. 1, 93–125.

    Article  MathSciNet  MATH  Google Scholar 

  133. S. Kreı̆n, Yu. Petunin, and E. Semenov, Interpolation of linear operators, Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, R.I., 1982, Translated from the Russian by J. Szűcs. MR 649411 (84j:46103)

    Google Scholar 

  134. Edwin Langmann, Noncommutative integration calculus, Journal of Mathematical Physics 36 (1995), no. 7, 3822–3835.

    Article  MathSciNet  MATH  Google Scholar 

  135. Michel L. Lapidus and Carl Pomerance, The Riemann Zeta-Function and the One-Dimensional Weyl-Berry Conjecture for Fractal Drums, Proceedings of the London Mathematical Society s3-66 (1993), no. 1, 41–69.

    Google Scholar 

  136. Michel L. Lapidus and Machiel van Frankenhuijsen, Fractal geometry, complex dimensions and zeta functions, second ed., Springer Monographs in Mathematics, Springer, New York, 2013. MR 2977849

    Google Scholar 

  137. Ari Laptev and Timo Weidl, Recent results on Lieb-Thirring inequalities, Journées “Équations aux Dérivées Partielles” (La Chapelle sur Erdre, 2000), Univ. Nantes, Nantes, 2000, pp. Exp. No. XX, 14. MR 1775696

    Google Scholar 

  138. Jr. Lawson, H. Blaine and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989.

    Google Scholar 

  139. J. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, vol. 218, Springer-Verlag, New York, 2003. MR 1930091 (2003k:58001)

    Google Scholar 

  140. G. Levitina, A. Pietsch, F. Sukochev, and D. Zanin, Completeness of quasi-normed operator ideals generated by s-numbers, Indagationes Mathematicae 25 (2014), no. 1, 49–58.

    Article  MathSciNet  MATH  Google Scholar 

  141. G. Levitina, F. Sukochev, and D. Zanin, Cwikel estimates revisited, ArXiv e-prints (2017).

    Google Scholar 

  142. V. Lidskii, Conditions for completeness of a system of root subspaces for non-selfadjoint operators with discrete spectrum, Trudy Moskov. Mat. Obšč. 8 (1959), 83–120. MR 0107817 (21 #6539)

    Google Scholar 

  143. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin, 1979, Function spaces. MR 540367 (81c:46001)

    Google Scholar 

  144. Tom Lindstrom, Brownian motion on nested fractals, Mem. Amer. Math. Soc., vol. 420, American Mathematical Society, Providence, R.I., 1990 (eng).

    Google Scholar 

  145. Jean-Louis Loday, Cyclic homology, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998, Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili. MR MR1600246 (98h:16014)

    Google Scholar 

  146. S. Lord, D. Potapov, and F. Sukochev, Measures from Dixmier traces and zeta functions, J. Funct. Anal. 259 (2010), no. 8, 1915–1949. MR 2671116 (2011j:58048)

    Article  MathSciNet  MATH  Google Scholar 

  147. S. Lord, A. Sedaev, and F. Sukochev, Dixmier traces as singular symmetric functionals and applications to measurable operators, J. Funct. Anal. 224 (2005), no. 1, 72–106. MR 2139105 (2006e:46065)

    Article  MathSciNet  MATH  Google Scholar 

  148. S. Lord and F. Sukochev, Noncommutative residues and a characterisation of the noncommutative integral, Proc. Amer. Math. Soc. 139 (2011), no. 1, 243–257. MR 2729087 (2011j:46104)

    Article  MathSciNet  MATH  Google Scholar 

  149. Steven Lord, Edward McDonald, Fedor Sukochev, and Dmitry Zanin, Quantum differentiability of essentially bounded functions on Euclidean space, J. Funct. Anal. 273 (2017), no. 7, 2353–2387. MR 3677828

    Article  MathSciNet  MATH  Google Scholar 

  150. Steven Lord, Fedor Sukochev, and Dmitry Zanin, Singular traces: theory and applications, De Gruyter Studies in Mathematics, vol. 46, Walter de Gruyter, 2012, Theory and applications. MR 3099777

    Google Scholar 

  151. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190. MR 0027868 (10,367e)

    Article  MathSciNet  MATH  Google Scholar 

  152. V. I. Macaev, A class of completely continuous operators, Dokl. Akad. Nauk SSSR 139 (1961), 548–551, (Russian).

    MathSciNet  Google Scholar 

  153. Yu. I. Manin, Algebraic aspects of non-linear differential equations, J. Sov. Math. 11 (1979), 1–122.

    Article  MATH  Google Scholar 

  154. S. Mazur, O metodach sumomalności, Ksi e ga Pami a tkowa I Polskiego Zjazdu Matematycznego. Suplément auz Annales de la Société Polonaise Mathématique, 1929.

    Google Scholar 

  155. _________ , On the generalized limit of bounded sequences, Colloquium Mathematicae 2 (1951), no. 3-4, 173–175.

    Article  MathSciNet  MATH  Google Scholar 

  156. Edward McDonald, Fedor Sukochev, and Dmitry Zanin, AC -algebraic approach to the principal symbol. II, ArXiv e-prints (2018).

    Google Scholar 

  157. S. Minakshisundaram, Eigenfunctions on Riemannian manifolds, J. Indian Math. Soc. 17 (1953), 158–165.

    MathSciNet  Google Scholar 

  158. S. Minakshisundaram and A. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242–256.

    Article  MathSciNet  MATH  Google Scholar 

  159. J. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Philos. Soc. 45 (1949), 99–124. MR 0029330 (10,582d)

    Article  MathSciNet  MATH  Google Scholar 

  160. R. D. Moyer, Computation of symbols onC -algebras of singular integral operators, Bull. Amer. Math. Soc. 77 (1971), no. 4, 615–620.

    Article  MathSciNet  MATH  Google Scholar 

  161. Gerard J Murphy, C*-algebras and operator theory, Academic Press, Boston, 1990.

    Google Scholar 

  162. R. Nest and E. Schrohe, Dixmier’s trace for boundary value problems, Manuscripta Math. 96 (1998), no. 2, 203–218. MR 1624529 (99f:58201)

    Article  MathSciNet  MATH  Google Scholar 

  163. Fabio Nicola, Trace functionals for a class of pseudo-differential operators in \(\mathbb {R}^n\), Mathematical Physics, Analysis and Geometry 6 (2003), no. 1, 89–105.

    Google Scholar 

  164. Fabio Nicola and Luigi Rodino, C -algebras and elliptic theory II, ch. Dixmier traceability for general pseudo-differential operators, pp. 227–237, Birkhäuser Verlag, 2008.

    Google Scholar 

  165. C. Pearcy and D. Topping, On commutators in ideals of compact operators, Michigan Math. J. 18 (1971), 247–252. MR 0284853 (44 #2077)

    Article  MathSciNet  MATH  Google Scholar 

  166. Vladimir V. Peller, Hankel operators and their applications, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. MR MR1949210 (2004e:47040)

    Book  MATH  Google Scholar 

  167. A. Pietsch, Operator ideals with many traces, Forschungsergebnisse FSU Jena, Nr. N/86/16, 1986.

    Google Scholar 

  168. _________ , Dixmier traces of operators on Banach and Hilbert spaces, Math. Nachr. 285 (2012), no. 16, 1999–2028. MR 2995429

    Article  MathSciNet  MATH  Google Scholar 

  169. Albrecht Pietsch, Einige neue Klassen von kompakten linearen Operatoren, Rev. Math. Pures Appl. (Roumaine) 8 (1963), 427–447.

    MATH  Google Scholar 

  170. _________ , Operator ideals with a trace, Mathematische Nachrichten 100 (1981), no. 1, 61–91 (eng).

    Article  MathSciNet  MATH  Google Scholar 

  171. _________ , Traces and shift invariant functionals, Math. Nachr. 145 (1990), 7–43. MR 1069016

    Google Scholar 

  172. _________ , About the Banach envelope ofl 1,, Rev. Mat. Complut. 22 (2009), no. 1, 209–226. MR 2499333 (2010g:46003)

    Google Scholar 

  173. _________ , Connes–Dixmier versus Dixmier Traces, Integral Equations and Operator Theory 77 (2013), no. 2, 243–259.

    Article  MathSciNet  MATH  Google Scholar 

  174. _________ , Traces of operators and their history, Acta et Commentationes Universitatis Tartuensis de Mathematica 18 (2014), no. 1, 51 – 64.

    Article  MathSciNet  MATH  Google Scholar 

  175. _________ , Traces on operator ideals and related linear forms on sequence ideals (part I), Indagationes Mathematicae 25 (2014), no. 2, 341–365, Zaanen Centennial Special Issue.

    Article  MathSciNet  MATH  Google Scholar 

  176. _________ , Traces on operator ideals and related linear forms on sequence ideals (part II), Integral Equations and Operator Theory 79 (2014), no. 2, 255–299.

    Google Scholar 

  177. _________ , Traces on operator ideals and related linear forms on sequence ideals (part III), Journal of Mathematical Analysis and Applications 421 (2015), no. 2, 971–981.

    Article  MathSciNet  MATH  Google Scholar 

  178. _________ , A new approach to operator ideals on Hilbert space and their traces, Integral Equations and Operator Theory 89 (2017), no. 4, 595–606.

    Article  MathSciNet  MATH  Google Scholar 

  179. _________ , The spectrum of shift operators and the existence of traces, Integral Equations and Operator Theory 90 (2018), no. 2, 17.

    Google Scholar 

  180. _________ , Traces and symmetric linear forms, Archiv der Mathematik (2018).

    Google Scholar 

  181. Denis Potapov and Fedor Sukochev, Unbounded Fredholm modules and double operator integrals, J. Reine Angew. Math. 626 (2009), 159–185. MR MR2492993

    Google Scholar 

  182. Denis Potapov, Fedor Sukochev, Anna Tomskova, and Dmitriy Zanin, Fréchet differentiability of the norm ofL p-spaces associated with arbitrary von Neumann algebras, C. R. Math. Acad. Sci. Paris 352 (2014), no. 11, 923–927. MR 3268764

    Google Scholar 

  183. Denis Potapov, Fedor Sukochev, Alexandr Usachev, and Dmitriy Zanin, Singular traces and perturbation formulae of higher order, J. Funct. Anal. 269 (2015), no. 5, 1441–1481. MR 3369943

    Article  MathSciNet  MATH  Google Scholar 

  184. S. Power, Another proof of Lidskii’s theorem on the trace, Bull. London Math. Soc. 15 (1983), no. 2, 146–148. MR 689247 (85g:47029)

    Google Scholar 

  185. S. C. Power, Commutator ideals and pseudodifferentialC -algebras, The Quarterly Journal of Mathematics 31 (1980), no. 4, 467–489.

    Article  MathSciNet  MATH  Google Scholar 

  186. R. A. Raimi, Factorization of summability-preserving generalized limits, J. London Math. Soc. 22 (1980), 398–402.

    Article  MathSciNet  MATH  Google Scholar 

  187. Burton Randol, On the Analytic Continuation of the Minakshisundaram-Pleijel Zeta Function for Compact Riemann Surfaces, Tran. Amer. Math. Soc. 201 (1975), 241–246.

    Article  MathSciNet  MATH  Google Scholar 

  188. Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0493421

    Google Scholar 

  189. _________ , Methods of modern mathematical physics. I, second ed., vol. I: Functional Analysis, revised and enlarged edition, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980, Functional analysis. MR 751959 (85e:46002)

    Google Scholar 

  190. Georges de Rham, Differentiable manifolds: forms, currents, harmonic forms, Grundlehren der mathematischen Wissenschaften ; 266, Springer-Verlag, Berlin-New York, 1984.

    Book  Google Scholar 

  191. M. Rieffel, C -algebras associated with irrational rotations, Pacific J. Math. 93 (1981), no. 2, 415–429. MR 623572 (83b:46087)

    Google Scholar 

  192. _________ , Deformation quantization for actions ofR d, Mem. Amer. Math. Soc. 106 (1993), no. 506, x+93. MR 1184061 (94d:46072)

    Google Scholar 

  193. Richard Rochberg and Stephen Semmes, Nearly weakly orthonormal sequences, singular value estimates, and Calderon-Zygmund operators, J. Funct. Anal. 86 (1989), no. 2, 237–306.

    Article  MathSciNet  MATH  Google Scholar 

  194. M. Ruzhansky and V. Turunen, Pseudo-differential operators and symmetries, Pseudo-Differential Operators. Theory and Applications, vol. 2, Birkhäuser Verlag, Basel, 2010, Background analysis and advanced topics. MR 2567604 (2011b:35003)

    Google Scholar 

  195. T. Sakai, Riemannian geometry, Translations of Mathematical Monographs, vol. 149, American Mathematical Society, Providence, RI, 1996, Translated from the 1992 Japanese original by the author. MR 1390760 (97f:53001)

    Google Scholar 

  196. W. Sargent, Some sequence spaces related to thel pspaces, J. London Math. Soc. 35 (1960), 161–171. MR 0116206 (22 #7001)

    Google Scholar 

  197. Elmar Schrohe, The symbols of an algebra of pseudodifferential operators., Pacific J. Math. 125 (1986), no. 1, 211–224 (eng).

    Article  MathSciNet  MATH  Google Scholar 

  198. A. Sedaev, Generalized limits and related asymptotic formulas, Mat. Zametki 86 (2009), no. 4, 612–627. MR 2591352 (2011e:58048)

    Article  Google Scholar 

  199. A. Sedaev and F. Sukochev, Dixmier measurability in Marcinkiewicz spaces and applications, J. Funct. Anal. 265 (2013), no. 12, 3053–3066. MR 3110494

    Article  MathSciNet  MATH  Google Scholar 

  200. A. Sedaev, F. Sukochev, and D. Zanin, Lidskii-type formulae for Dixmier traces, Integral Equations Operator Theory 68 (2010), no. 4, 551–572. MR 2745479 (2011j:46108)

    Article  MathSciNet  MATH  Google Scholar 

  201. R. Seeley, Complex powers of an elliptic operator, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., 1967, pp. 288–307. MR 0237943 (38 #6220)

    Google Scholar 

  202. Evgenii Semenov and Fedor Sukochev, Invariant Banach limits and applications, J. Funct. Anal. 259 (2010), 1517–1541.

    Article  MathSciNet  MATH  Google Scholar 

  203. Evgenii Semenov, Fedor Sukochev, Alexandr Usachev, and Dmitriy Zanin, Banach limits and traces on \(\mathcal {L}_{1,\infty }\), Adv. Math. 285 (2015), 568–628. MR 3406510

    Google Scholar 

  204. M. A. Shubin, Pseudodifferential operators and spectral theory, second ed., Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 2001, Translated from the 1978 Russian original by Stig I. Andersson. MR 1852334 (2002d:47073)

    Google Scholar 

  205. Barry Simon, Analysis with weak trace ideals and the number of bound states of Schrödinger operators, Trans. Amer. Math. Soc. 224 (1976), no. 2, 367–380. MR 0423128

    MathSciNet  MATH  Google Scholar 

  206. _________ , Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, Cambridge, 1979. MR MR541149 (80k:47048)

    Google Scholar 

  207. _________ , Trace ideals and their applications, second ed., Mathematical Surveys and Monographs, vol. 120, American Mathematical Society, Providence, RI, 2005. MR 2154153 (2006f:47086)

    Google Scholar 

  208. Michael Spivak, A comprehensive introduction to differential geometry. Vol. III, second ed., Publish or Perish Inc., Wilmington, Del., 1979. MR 532832 (82g:53003c)

    Google Scholar 

  209. Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 (44 #7280)

    Google Scholar 

  210. Benjamin A. Steinhurst and Alexander Teplyaev, Existence of a meromorphic extension of spectral zeta functions on fractals, Letters in Mathematical Physics 103 (2013), no. 12, 1377–1388.

    Article  MathSciNet  Google Scholar 

  211. A. B. Stern, Finite-rank approximations of spectral zeta residues, ArXiv e-prints (2017).

    Google Scholar 

  212. M. A. Subkhankulov, Tauberovy teoremy s ostatkom, Izdat. “Nauka”, Moscow, 1976. MR 0612819

    Google Scholar 

  213. L. Sucheston, Banach limits, Amer. Math. Monthly 74 (1967), 308–311. MR 0225145 (37 #740)

    Article  MathSciNet  MATH  Google Scholar 

  214. F Sukochev, A Usachev, and D Zanin, Singular traces and residues of the zeta-function, Indiana University Mathematics Journal 66 (2017), no. 4, 1107–1144 (English).

    Article  MathSciNet  MATH  Google Scholar 

  215. F. Sukochev and D. Zanin, ζ-function and heat kernel formulae, J. Funct. Anal. 260 (2011), no. 8, 2451–2482. MR 2772378 (2012c:58048)

    Article  MathSciNet  MATH  Google Scholar 

  216. _________ , Dixmier traces are weak dense in the set of all fully symmetric traces, J. Funct. Anal. 266 (2014), no. 10, 6158–6173. MR 3188711

    Google Scholar 

  217. _________ , Which traces are spectral?, Adv. Math. 252 (2014), 406–428. MR 3144235

    Google Scholar 

  218. _________ , Fubini theorem in noncommutative geometry, J. Funct. Anal. 272 (2017), no. 3, 1230–1264. MR 3579138

    Google Scholar 

  219. _________ , Connes integration formula for the noncommutative plane, Comm. Math. Phys. 359 (2018), no. 2, 449–466.

    Google Scholar 

  220. F. Sukochev and D. Zanin, The Connes character formula for locally compact spectral triples, ArXiv e-prints (2018).

    Google Scholar 

  221. Fedor Sukochev, Completeness of quasi-normed symmetric operator spaces, Indag. Math. (N.S.) 25 (2014), no. 2, 376–388. MR 3151823

    Google Scholar 

  222. Fedor Sukochev, Alexandr Usachev, and Dmitriy Zanin, Generalized limits with additional invariance properties and their applications to noncommutative geometry, Adv. in Math. 239 (2013), 164 – 189.

    Article  MathSciNet  MATH  Google Scholar 

  223. Fedor Sukochev, Alexandr Usachev, and Dmitriy Zanin, On the distinction between the classes of Dixmier and Connes-Dixmier traces, Proc. Amer. Math. Soc. 141 (2013), no. 6, 2169–2179. MR 3034443

    Google Scholar 

  224. _________ , Dixmier traces generated by exponentiation invariant generalised limits, Journal of Noncommutative Geometry 8 (2014), no. 2, 321–336 (eng).

    Article  MathSciNet  MATH  Google Scholar 

  225. Fedor. Sukochev and Dmitriy. Zanin, AC -algebraic approach to the principal symbol, Journal of Operator Theory (Accepted manuscript. 2018).

    Google Scholar 

  226. Hiroshi Takai and Toshikazu Natsume, A. Connes’ noncommutative differential geometry, Sūgaku 35 (1983), no. 2, 97–112. MR 732432 (86e:58002)

    Google Scholar 

  227. Michael E. Taylor, Beals-Cordes-type characterizations of pseudodifferential operators, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1711–1716. MR 1371144 (97g:35186)

    Article  MathSciNet  Google Scholar 

  228. Alexandr Usachev, Fedor Sukochev, and Dmitriy Zanin, Singular traces and residues of thezeta-function, Indiana Univ. Math. J. 66 (2017), 1107–1144.

    Article  MathSciNet  MATH  Google Scholar 

  229. J. Varga, Traces on irregular ideals, Proc. Amer. Math. Soc. 107 (1989), no. 3, 715–723. MR 984818 (91e:47046)

    Article  MathSciNet  MATH  Google Scholar 

  230. _________ , Traces and commutators of ideals of compact operators, Ph.D. Dissertation. Ohio State University, Mathematics, 1995.

    Google Scholar 

  231. Joseph C. Várilly and José M. Gracia-Bondía, Algebras of distributions suitable for phase-space quantum mechanics. II. Topologies on the Moyal algebra, J. Math. Phys. 29 (1988), no. 4, 880–887. MR 940352

    Google Scholar 

  232. Joseph C. Várilly, José M. Gracia-Bondía, and Walter Schempp, The Moyal representation of quantum mechanics and special function theory, Acta Applicandae Mathematica 18 (1990), no. 3, 225–250.

    Article  MathSciNet  MATH  Google Scholar 

  233. D. V. Vassilevich, Heat kernel expansion: user’s manual, Physics Reports 388 (2003), no. 5, 279–360.

    Article  MathSciNet  MATH  Google Scholar 

  234. Timo Weidl, Cwikel type estimates in non-power ideals, Math. Nachr. 176 (1995), 315–334. MR 1361143

    Article  MathSciNet  MATH  Google Scholar 

  235. _________ , Another look at Cwikel’s inequality, Differential operators and spectral theory, Amer. Math. Soc. Transl. Ser. 2, vol. 189, Amer. Math. Soc., Providence, RI, 1999, pp. 247–254. 1730517 (2000i:47095)

    Google Scholar 

  236. G. L. Weiss, Commutators and operator ideals, Ph.D. Dissertation. University of Michigan, 1975, p. 209. MR 2625442

    Google Scholar 

  237. Hermann Weyl, Ueber die asymptotische verteilung der eigenwerte, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1911 (1911), 110–117.

    MATH  Google Scholar 

  238. _________ , Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 408–411. MR 0030693 (11,37d)

    Google Scholar 

  239. M. Wodzicki, Local invariants of spectral asymmetry, Invent. Math. 75 (1984), no. 1, 143–177. MR 728144 (85g:58089)

    Article  MathSciNet  MATH  Google Scholar 

  240. _________ , Noncommutative residue. I. Fundamentals, K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 320–399. MR 923140 (90a:58175)

    Google Scholar 

  241. _________ , Vestigia investiganda, Mosc. Math. J. 2 (2002), no. 4, 769–798, 806, Dedicated to Yuri I. Manin on the occasion of his 65th birthday. MR 1986090 (2005j:47075)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Alain Connes, Albrecht Pietsch and Raphael Ponge for historical comments. The authors also thank Albrecht Pietsch and Aleksandr Usachev for discussion on the PhD thesis of Jozsef Varga.

This research was supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Lord .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lord, S., Sukochev, F.A., Zanin, D. (2019). Advances in Dixmier traces and applications. In: Chamseddine, A., Consani, C., Higson, N., Khalkhali, M., Moscovici, H., Yu, G. (eds) Advances in Noncommutative Geometry. Springer, Cham. https://doi.org/10.1007/978-3-030-29597-4_9

Download citation

Publish with us

Policies and ethics