Outage Constrained Beamformer Design

  • Andreas Gründinger
Part of the Foundations in Signal Processing, Communications and Networking book series (SIGNAL, volume 22)


While Chaps.  3 and  4 discuss ergodic robust beamforming, which implies a fast-fading channel model, this chapter focuses on slower fading. The coherence time shall be in the range of the transmit phase, such that the channel is either quasistatic or each transmit code word experiences only a few channel realizations. Transmitter CSI can still be imperfect, e.g., due to limited feedback and delayed CSI usage. In this case, non-robust transmit strategies are unable to ensure reliable data transmission—an unknown number of outages occur when the transmitter sends information at the imposed rates. An outage defines the event that the channel is too bad to decode error-free at the transmit data rate.


  1. 1.
    D. Tse, P. Viswanath, Fundamentals of Wireless Communications, 4th edn. (Cambridge University Press, New York, NY, 2008)zbMATHGoogle Scholar
  2. 11.
    M. Schubert, H. Boche, QoS-based resource allocation and transceiver optimization. Found. Trends Commun. Inf. Theory 2(6), 383 (2005)Google Scholar
  3. 12.
    E. Karipidis, N. Sidiropoulos, Z.Q. Luo, Quality of service and max-min fair transmit beamforming to multiple cochannel multicast groups. IEEE Trans. Signal Process. 56(3), 1268 (2008)Google Scholar
  4. 13.
    D. Christopoulos, S. Chatzinotas, B. Ottersten, Weighted fair multicast multigroup beamforming under per-antenna power constraints. IEEE Trans. Signal Process. 62(19), 5132 (2014)Google Scholar
  5. 30.
    A. Avestimehr, D. Tse, Outage capacity of the fading relay channel in the low-SNR regime. IEEE Trans. Inf. Theory 53(4), 1401 (2007)Google Scholar
  6. 35.
    S. Vorobyov, H. Chen, A. Gershman, On the relationship between robust minimum variance beamformers with probabilistic and worst-case distortionless response constraints. IEEE Trans. Signal Process. 56(11), 5719 (2008)Google Scholar
  7. 36.
    K.Y. Wang, A.C. So, T.H. Chang, W.K. Ma, C.Y. Chi, Outage constrained robust transmit optimization for multiuser MISO downlinks: tractable approximations by conic optimization. IEEE Trans. Signal Process. 62(21), 5690 (2014)Google Scholar
  8. 44.
    N. Vučić, H. Boche, A tractable method for chance-constrained power control in downlink multiuser MISO systems with channel uncertainty. IEEE Signal Process. Lett. 16(5), 346 (2009)Google Scholar
  9. 47.
    M. Botros Shenouda, L. Lampe, Quasi-convex designs of max-min linear BC precoding with outage QoS constraints, in Proceedings of the 6th International Symposium on Wireless Communication Systems ISWCS (2009), pp. 156–160Google Scholar
  10. 51.
    X. He, Y.C. Wu, Probabilistic QoS Constrained robust downlink multiuser MIMO transceiver design with arbitrarily distributed channel uncertainty. IEEE Trans. Wirel. Commun. 12(12), 6292 (2013)Google Scholar
  11. 75.
    R.D. Yates, A framework for uplink power control in cellular radio systems. IEEE J. Sel. Areas Commun. 13(7), 1341 (1995)Google Scholar
  12. 92.
    N. Vučić, M. Schubert, Fixed point iteration for max-min SIR balancing with general interference functions, in Proceedings of the 36th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2011), pp. 3456–3459Google Scholar
  13. 93.
    S. Kandukuri, S. Boyd, Optimal power control in interference-limited fading wireless channels with outage-probability specifications. IEEE Trans. Wirel. Commun. 1(1), 46 (2002)Google Scholar
  14. 98.
    K. Toh, R. Tütüncü, M. Todd, SDPT3—a matlab software package for semidefinite programming. Optim. Methods Softw. 11(1), 545 (1999)Google Scholar
  15. 99.
    M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming (2009),
  16. 103.
    A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization. Analysis, Algorithms, and Engineering Applications (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001)Google Scholar
  17. 104.
    A. Gershman, N. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson, B. Ottersten, Convex optimization-based beamforming. IEEE Signal Process. Mag. 27(3), 62 (2010)Google Scholar
  18. 105.
    Y. Huang, D. Palomar, S. Zhang, Lorentz-positive maps and quadratic matrix inequalities with applications to robust MISO transmit beamforming. IEEE Trans. Signal Process. 61(5), 1121 (2013)Google Scholar
  19. 107.
    H. Wolkowicz, R. Saigal, L. Vandenberghe, Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, 1st edn. (Kluwer, Norwell, MS, 2000)CrossRefGoogle Scholar
  20. 137.
    R. Henrion. Introduction to chance constrained programming. Introduction Tutorial in E-Collection (2003),
  21. 138.
    M. Shenouda, T. Davidson, Probabilistically-constrained approaches to the design of the multiple antenna downlink, in Proceedings of the 42nd Asilomar Conference on Signals, Systems, and Computers (2008), pp. 1120–1124Google Scholar
  22. 144.
    A. Gründinger, R. Bethenod, M. Joham, M. Riemensberger, W. Utschick, Optimal power allocation for the chance-constrained vector broadcast channel and rank-one channel approximation, in Proceedings of the 12th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2013), pp. 31–35Google Scholar
  23. 168.
    S. Vorobyov, Y. Rong, A. Gershman, Robust adaptive beamforming using probability-constrained optimization, in IEEE/SP 13th Workshop on Statistical Signal Processing (2005), pp. 934–939Google Scholar
  24. 169.
    A. Mutapcic, S.J. Kim, S. Boyd, A tractable method for robust downlink beamforming in wireless communications, in Proceedings of the 41st Asilomar Conference on Signals, Systems, and Computers (2007), pp. 1224–1228Google Scholar
  25. 170.
    N. Vučić, H. Boche, Robust QoS-constrained optimization of downlink multiuser MISO systems. IEEE Trans. Signal Process. 57(2), 714 (2009)Google Scholar
  26. 172.
    I. Bechar, A Bernstein-type inequality for stochastic processes of quadratic forms Gaussian variables (2009).
  27. 174.
    J.P. Imhof, Computing the distribution of quadratic forms in normal variables. Biometrika 48(3/4), 419 (1961)Google Scholar
  28. 201.
    K. Mukkavilli, A. Sabharwal, E. Erkip, B. Aazhang, On beamforming with finite rate feedback in multiple-antenna systems. IEEE Trans. Inf. Theory 49(10), 2562 (2003)Google Scholar
  29. 203.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 1st edn. (Dover, New York, 1964)zbMATHGoogle Scholar
  30. 211.
    H.O. Georgii, Stochastik: Einführung in die Wahrscheinlichkeitstheorie und Statistik, 4th edn. (De Gruyter, Berlin, 2009)CrossRefGoogle Scholar
  31. 227.
    D.P. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont, MA, 1999)Google Scholar
  32. 246.
    J. Gorski, F. Pfeuffer, K. Klamroth, Biconvex sets and optimization with biconvex functions: a survey and extensions. Math. Methods Oper. Res. 66(3), 373 (2007)Google Scholar
  33. 254.
    A. Sharpio, D. Dentcheva, A. Ruszczyński, Lectures on Stochastic Programming (Society for Industrial and Applied Mathematics, Philadelphia, 2009)Google Scholar
  34. 257.
    L. Ozarow, S. Shamai, A. Wyner, Information theoretic considerations for cellular mobile radio. IEEE Trans. Veh. Technol. 43(2), 359 (1994)Google Scholar
  35. 258.
    A. Ben-Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization. Princeton Series in Applied Mathematics (Princeton University Press, Princeton, 2009)Google Scholar
  36. 259.
    C.M. Lagoa, X. Li, M. Sznaier, Probabilistically constrained linear programs and risk-adjusted controller design. SIAM J. Optim. 15(3), 938 (2005)Google Scholar
  37. 260.
    R. Henrion, Structural properties of linear probabilistic constraints. Optimization 56(4), 425 (2007)Google Scholar
  38. 261.
    D. Raphaeli, Distribution of noncentral indefinite quadratic forms in complex normal variables. IEEE Trans. Inf. Theory 42(3), 1002 (1996)Google Scholar
  39. 262.
    T. Al-Naffouri, B. Hassibi, On the distribution of indefinite quadratic forms in Gaussian random variables, in Proceedings of the IEEE International Symposium on Information Theory ISIT (2009), pp. 1744–1748Google Scholar
  40. 263.
    B. Chalise, S. Shahbazpanahi, A. Czylwik, A. Gershman, Robust downlink beamforming based on outage probability specifications. IEEE Trans. Wirel. Commun. 6(10), 3498 (2007)Google Scholar
  41. 264.
    X. He, Y.C. Wu, Tight probabilistic MSE constrained multiuser MISO transceiver design under channel uncertainty, in Proceedings of the IEEE International Conference on Communications ICC (2015)Google Scholar
  42. 265.
    D. Bertsimas, M. Sim, Tractable approximations to robust conic optimization problems. Math. Program. 107, 5 (2006)MathSciNetCrossRefGoogle Scholar
  43. 266.
    R. Hildebrand, An LMI description for the cone of Lorentz-positive maps. Linear Multilinear Algebra 55(6), 551 (2007)Google Scholar
  44. 267.
    R. Hildebrand, Linear Multilinear Algebra 59(7), 719 (2011)MathSciNetCrossRefGoogle Scholar
  45. 268.
    D. Hsu, S. Kakade, T. Zhang, An LMI description for the cone of Lorentz-positive maps II. Electron. Commun. Probab. 17(52), 1 (2012)Google Scholar
  46. 269.
    P. Massart, Concentration Inequalities and Model Selection. Lecture Notes in Mathematics, vol. 1896 (Springer, Berlin/Heidelberg, 2007)Google Scholar
  47. 270.
    A. Ben-Tal, A. Nemirovski, On safe tractable approximations of chance-constrained linear matrix inequalities. Math. Oper. Res. 34(1), 1 (2009)Google Scholar
  48. 271.
    N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions. Wiley Series in Probability and Mathematical Statistics, vol. 2, 2nd edn. (Wiley, New York, NY, 1995)Google Scholar
  49. 272.
    L. Xu, K. Wong, J.K. Zhang, D. Ciochina, M. Pesavento, A Riemannian distance for robust downlink beamforming, in Proceedings of the 12th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2013), pp. 465–469Google Scholar
  50. 273.
    J. Lindblom, E. Karipidis, E. Larsson, Outage rate regions for the MISO IFC, in Proceedings of the 43rd Asilomar Conference on Signals, Systems, and Computers (2009), pp. 1120–1124Google Scholar
  51. 274.
    C. Lin, C.J. Lu, W.H. Chen, Outage-constrained coordinated beamforming with opportunistic interference cancellation. IEEE Trans. Signal Process. 62(16), 4311 (2014)Google Scholar
  52. 275.
    N. Zlatanov, Z. Hadzi-Velkov, G. Karagiannidis, R. Schober, Cooperative diversity with mobile nodes: capacity outage rate and duration. IEEE Trans. Inf. Theory 57(10), 6555 (2011)Google Scholar
  53. 276.
    A. Gründinger, L. Gerdes, M. Joham, W. Utschick, Bounds on the outage constrained capacity of the Gaussian relay channel, in Communications in Interference Limited Networks (Springer, New York, 2016)Google Scholar
  54. 277.
    R. Di Taranto, P. Popovski, Outage performance in cognitive radio systems with opportunistic interference cancelation. IEEE Trans. Wirel. Commun. 10(4), 1280 (2011)Google Scholar
  55. 278.
    A. Nuttall, Some integrals involving the Marcum-Q function. IEEE Trans. Inf. Theory 21(1), 95 (1975)Google Scholar
  56. 279.
    D. Benton, K. Krishnamoorthy, Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral t, and the distribution of the square of the sample multiple correlation coefficient. Comput. Stat. Data Anal. 43(2), 249 (2003)Google Scholar
  57. 280.
    M. Kang, M.S. Alouini, Quadratic forms in complex Gaussian matrices and performance analysis of MIMO systems with cochannel interference. IEEE Trans. Wirel. Commun. 3(2), 418 (2004)Google Scholar
  58. 281.
    A. Mathai, S. Provost (eds.), Quadratic Forms in Random Variables: Theory and Applications. Statistics: Textbooks and Monographs, vol. 126 (Marcel Dekker, New York, 1992). Various authorsGoogle Scholar
  59. 282.
    B.K. Shah, Distribution of definite and of indefinite quadratic forms from a non-central normal distribution. Ann. Math. Stat. 34(1), 186 (1963)Google Scholar
  60. 283.
    S.J. Press, Linear combinations of non-central Chi-square variates. Ann. Math. Stat. 37(2), 480 (1966)Google Scholar
  61. 284.
    J. Gil-PeLaez, Note on the inversion theorem. Biometrika 38(3–4), 481 (1951)Google Scholar
  62. 285.
    P. Duchesne, P.L. De Micheaux, Computing the distribution of quadratic forms: further comparisons between the Liu–Tang–Zhang approximation and exact methods. Comput. Stat. Data Anal. 54(4), 858 (2010)Google Scholar
  63. 286.
    R. Henrion, C. Strugarek, Convexity of chance constraints with independent random variables. Comput. Optim. Appl. 41(2), 263 (2008)Google Scholar
  64. 287.
    R. Lucchetti, G. Salinetti, Uniform convergence of probability measures: topological criteria. J. Multivar. Anal. 51(2), 254 (1994)Google Scholar
  65. 288.
    M. Payaró, A. Pascual-Iserte, M. Lagunas, Robust power allocation designs for multiuser and multiantenna downlink communication systems through convex optimization. IEEE J. Sel. Areas Commun. 25(7), 1390 (2007)Google Scholar
  66. 289.
    A. Shaverdian, M. Nakhai, Robust distributed beamforming with interference coordination in downlink cellular networks. IEEE Trans. Commun. 62(7), 2411 (2014)Google Scholar
  67. 290.
    D. Bertsimas, D. Brown, C. Caramanis, Theory and applications of robust optimization. SIAM Rev. 53(3), 464 (2011)Google Scholar
  68. 291.
    E. Song, Q. Shi, M. Sanjabi, R. Sun, Z.Q. Luo, Robust SINR-constrained MISO downlink beamforming: when is semidefinite programming relaxation tight?, in Proceedings of the 36th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2011), pp. 3096–3099Google Scholar
  69. 292.
    G. Zheng, K.K. Wong, B. Ottersten, Robust cognitive beamforming with bounded channel uncertainties. IEEE Trans. Signal Process. 57(12), 4871 (2009)Google Scholar
  70. 293.
    R.W. Cottle, Manifestations of the Schur complement. Linear Algebra Appl. 8(3), 189 (1974)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andreas Gründinger
    • 1
  1. 1.ErgoldingGermany

Personalised recommendations