Advertisement

Mean Square Error Transceiver Design for Additive Fading

  • Andreas Gründinger
Chapter
  • 159 Downloads
Part of the Foundations in Signal Processing, Communications and Networking book series (SIGNAL, volume 22)

Abstract

For the additive channel model and imperfect CSI at the multi-antenna transmitter, rate based beamformer optimizations are difficult to solve directly. The closed-form expressions for ergodic rates involve numeric integrations and are hardly known for other scenarios than Rayleigh or Rician fading (Kang and Alouini, IEEE Trans Wirel Commun 5:112, 143, 2006; Taricco and Riegler, IEEE Trans Inf Theory 57:4123, 2011). This prevents a reformulation of the QoS and RB optimizations into convex form (cf. Chap.  3).

References

  1. 11.
    M. Schubert, H. Boche, QoS-based resource allocation and transceiver optimization. Found. Trends Commun. Inf. Theory 2(6), 383 (2005)Google Scholar
  2. 25.
    M. Kang, M.S. Alouini, Capacity of correlated MIMO Rayleigh channels. IEEE Trans. Wirel. Commun. 5(1), 143 (2006)Google Scholar
  3. 26.
    M. Kang, M.S. Alouini, Capacity of MIMO Rician channels. IEEE Trans. Wirel. Commun. 5(1), 112 (2006)Google Scholar
  4. 27.
    M. Kießling, Unifying analysis of ergodic MIMO capacity in correlated Rayleigh fading environments. Eur. Trans. Telecommun. 16(1), 17 (2005)Google Scholar
  5. 34.
    M. Razaviyayn, M.S. Boroujeni, Z.Q. Luo, A stochastic weighted MMSE approach to sum rate maximization for a MIMO interference channel, in Proceedings of the 12th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2013), pp. 325–329Google Scholar
  6. 43.
    M. Joham, P. Castro, W. Utschick, L. Castedo, Robust precoding with limited feedback design based on precoding MSE for MU-MISO systems. IEEE Trans. Signal Process. 60(6), 3101 (2012)Google Scholar
  7. 65.
    R. Hunger, M. Joham, A complete description of the QoS feasibility region in the vector broadcast channel. IEEE Trans. Signal Process. 57(7), 3870 (2010)Google Scholar
  8. 66.
    R. Hunger, Analysis and Transceiver Design for the MIMO Broadcast Channel. Foundations in Signal Processing, Communications and Networking, vol. 8 (Springer, Berlin/Heidelberg, 2013)Google Scholar
  9. 67.
    M. Schubert, H. Boche, Solution of the multiuser downlink beamforming problem with individual SINR constraints. IEEE Trans. Veh. Technol. 53(1), 18 (2004)Google Scholar
  10. 68.
    S. Shi, M. Schubert, H. Boche, Downlink MMSE transceiver optimization for multiuser MIMO systems: duality and sum-MSE minimization. IEEE Trans. Signal Process. 55(11), 5436 (2007)Google Scholar
  11. 71.
    M. Bengtsson, B. Ottersten, Optimal downlink beamforming using semidefinite optimization, in Proceedings of the 37th Annual Allerton Conference on Communication, Control, and Computing (1999), pp. 987–996Google Scholar
  12. 73.
    A. Wiesel, Y. Eldar, S. Shamai, Linear precoding via conic optimization for fixed MIMO receivers. IEEE Trans. Signal Process. 54(1), 161 (2006)Google Scholar
  13. 74.
    W. Yu, T. Lan, Transmitter optimization for the multi-antenna downlink with per-antenna power constraints. IEEE Trans. Signal Process. 55(6), 2646 (2007)Google Scholar
  14. 75.
    R.D. Yates, A framework for uplink power control in cellular radio systems. IEEE J. Sel. Areas Commun. 13(7), 1341 (1995)Google Scholar
  15. 78.
    K. Cumanan, J. Tang, S. Lambotharan, Rate balancing based linear transceiver design for multiuser MIMO system with multiple linear transmit covariance constraints, in Proceedings of the IEEE International Conference on Communications ICC (2011)Google Scholar
  16. 79.
    A. Tölli, M. Codreanu, M. Juntti, Linear multiuser MIMO transceiver design with quality of service and per-antenna power constraints. IEEE Trans. Signal Process. 56(7), 3049 (2008)Google Scholar
  17. 89.
    M. Schubert, H. Boche, A generic approach to QoS-based transceiver optimization. IEEE Trans. Commun. 55(8), 1557 (2007)Google Scholar
  18. 90.
    H. Boche, M. Schubert, A superlinearly and globally convergent algorithm for power control and resource allocation with general interference functions. IEEE/ACM Trans. Netw. 16(2), 383 (2008)Google Scholar
  19. 92.
    N. Vučić, M. Schubert, Fixed point iteration for max-min SIR balancing with general interference functions, in Proceedings of the 36th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2011), pp. 3456–3459Google Scholar
  20. 99.
    M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming (2009), http://stanford.edu/~boyd/cvx
  21. 102.
    S. Boyd, L. Vandenberghe, Convex Optimization, 1st edn. (Cambridge University Press, New York, NY, 2004)CrossRefGoogle Scholar
  22. 104.
    A. Gershman, N. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson, B. Ottersten, Convex optimization-based beamforming. IEEE Signal Process. Mag. 27(3), 62 (2010)Google Scholar
  23. 114.
    E. Jorswieck, B. Ottersten, A. Sezgin, A. Paulraj, Guaranteed performance region in fading orthogonal space-time coded broadcast channels. EURASIP J. Wirel. Commun. Netw. 2008(39), 1 (2008)Google Scholar
  24. 115.
    M. Joham, R. Hunger, Feasible rate region of the MIMO broadcast channel with linear transceivers, in Proceedings of the 14th International ITG Workshop on Smart Antennas WSA (2010), pp. 342–349Google Scholar
  25. 116.
    T. Bogale, L. Vandendorpe, Robust sum MSE optimization for downlink multiuser MIMO systems with arbitrary power constraint: generalized duality approach. IEEE Trans. Signal Process. 60(4), 1862 (2012)Google Scholar
  26. 118.
    G. Dartmann, X. Gong, W. Afzal, G. Ascheid, On the duality of the max-min beamforming problem with per-antenna and per-antenna-array power constraints. IEEE Trans. Veh. Technol. 62(2), 606 (2013)Google Scholar
  27. 119.
    G.H. Golub, C.F. van Loan, Matrix Computations, 3rd edn. (The Johns Hopkins University Press, Baltimore, NY, 1996)zbMATHGoogle Scholar
  28. 121.
    S. He, Y. Huang, L. Yang, A. Nallanathan, P. Liu, A multi-cell beamforming design by uplink-downlink max-min SINR duality. IEEE Trans. Wirel. Commun. 11(8), 2858 (2012)Google Scholar
  29. 132.
    G. Taricco, E. Riegler, On the ergodic capacity of correlated Rician fading MIMO channels with interference. IEEE Trans. Inf. Theory 57(7), 4123 (2011)Google Scholar
  30. 135.
    R. El Assir, F.A. Dietrich, M. Joham, W. Utschick, Min-max MSE precoding for broadcast channels based on statistical channel state information, in Proceedings of the 7th IEEE International Workshop on Signal Processing Advances Wireless Communications SPAWC, Cannes (2006)Google Scholar
  31. 136.
    M. Ding, S. Blostein, MIMO minimum total MSE transceiver design with imperfect CSI at both ends. IEEE Trans. Signal Process. 57(3), 1141 (2009)Google Scholar
  32. 145.
    A. Gründinger, M. Joham, J.P. González-Coma, L. Castedo, W. Utschick, Average sum MSE minimization in the multi-user downlink with multiple power constraints, in Proceedings of the 48th Asilomar Conference on Signals, Systems, and Computers (2014), pp. 1279–1285Google Scholar
  33. 152.
    D. Guo, S. Shamai, S. Verdú, Mutual information and minimum mean-square error in Gaussian channels. IEEE Trans. Inf. Theory 51(4), 1261 (2005)Google Scholar
  34. 153.
    P. Stoica, Y. Jiang, J. Li, On MIMO channel capacity: an intuitive discussion. IEEE Signal Process. Mag. 22(3), 83 (2005)Google Scholar
  35. 154.
    S. Shi, M. Schubert, H. Boche, Rate optimization for multiuser MIMO systems with linear processing. IEEE Trans. Signal Process. 56(8), 4020 (2008)Google Scholar
  36. 155.
    S. Christensen, R. Agarwal, E. Carvalho, J. Cioffi, Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design. IEEE Trans. Wirel. Commun. 7(12), 4792 (2008)Google Scholar
  37. 156.
    Q. Shi, M. Razaviyayn, Z.Q. Luo, C. He, An Iteratively Weighted MMSE Approach to distributed sum-utility maximization for a MIMO interfering broadcast channel. IEEE Trans. Signal Process. 59(9), 4331 (2011)Google Scholar
  38. 157.
    A. Gründinger, M. Joham, W. Utschick, Stochastic transceiver design in point-to-point MIMO channels with imperfect CSI, in Proceedings of the 15th International ITG Workshop on Smart Antennas WSA, Aachen (2011)Google Scholar
  39. 158.
    A. Gründinger, M. Joham, W. Utschick, Stochastic transceiver design in multi-antenna channels with statistical channel state information, in Proceedings of the 36th International Conference on Acoustics, Speech, and Signal Processing ICASSP, Prague (2011)Google Scholar
  40. 159.
    F. Wang, X. Yuan, S.C. Liew, D. Guo, Wireless MIMO switching: weighted sum mean square error and sum rate optimization. IEEE Trans. Inf. Theory 59(9), 5297 (2013)Google Scholar
  41. 161.
    R. Hunger, M. Joham, W. Utschick, On the MSE-duality of the broadcast channel and the multiple access channel. IEEE Trans. Signal Process. 57(2), 698 (2009)Google Scholar
  42. 162.
    M. Joham, M. Vonbun, W. Utschick, MIMO BC/MAC MSE duality with imperfect transmitter and perfect receiver CSI, in Proceedings of the 11th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2010)Google Scholar
  43. 164.
    J.P. González-Coma, A. Gründinger, M. Joham, L. Castedo Ribas, W. Utschick, On MSE balancing in the MIMO broadcast channel with unequal targets, in Proceedings of the 19th International ITG Workshop on Smart Antennas WSA, Munich (2016)Google Scholar
  44. 166.
    F. Boccardi, H. Huang, M. Trivellato, Multiuser eigenmode transmission for MIMO broadcast channels with limited feedback, in Proceedings of the 7th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2007)Google Scholar
  45. 167.
    M. Kobayashi, G. Caire, Joint beamforming and scheduling for a multi-antenna downlink with imperfect transmitter channel knowledge. IEEE J. Sel. Areas Commun. 25(7), 1468 (2007)Google Scholar
  46. 178.
    M. Ding, S.D. Blostein, Maximum mutual information design for MIMO systems with imperfect channel knowledge. IEEE Trans. Inf. Theory 56(10), 4793 (2010)Google Scholar
  47. 203.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 1st edn. (Dover, New York, 1964)zbMATHGoogle Scholar
  48. 219.
    M. Joham, A. Gründinger, A. Pastore, J. Fonollosa, W. Utschick, Rate balancing in the vector BC with erroneous CSI at the receivers, in Proceedings of the 47th Annual Conference on Information Sciences and Systems, Baltimore, MD (2013)Google Scholar
  49. 226.
    C. Nuzman, Contraction approach to power control, with non-monotonic applications, in Proceedings of the IEEE Global Communications Conference GLOBECOM (2007), pp. 5283–5287Google Scholar
  50. 227.
    D.P. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont, MA, 1999)Google Scholar
  51. 228.
    R. Hunger, D.A. Schmidt, M. Joham, W. Utschick, A general covariance-based optimization framework using orthogonal projections, in Proceedings of the 9th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2008), pp. 76–80Google Scholar
  52. 229.
    A. Bermon, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences (Society for Industrial and Applied Mathematics, Philadelphia, 1994)CrossRefGoogle Scholar
  53. 232.
    M. Grant, S. Boyd, Y. Ye, Disciplined convex programming, in Global Optimization: From Theory to Implementation, Nonconvex Optimization and Its Applications, ed. by L. Liberti, N. Maculan (Springer, New York, 2006), pp. 155–210CrossRefGoogle Scholar
  54. 234.
    X. Zhang, D.P. Palomar, B. Ottersten, Statistically robust design of linear MIMO transceivers. IEEE Trans. Signal Process. 56(8), 3678 (2008)Google Scholar
  55. 235.
    J. Wang, D.P. Palomar, Robust MMSE precoding in MIMO channels with pre-fixed receivers. IEEE Trans. Signal Process. 58(11), 5802 (2010)Google Scholar
  56. 236.
    T. Endeshaw, B. Chalise, L. Vandendorpe, MSE uplink-downlink duality of MIMO systems under imperfect CSI, in International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Aruba, Dutch Antilles (2009), pp. 384–387Google Scholar
  57. 237.
    M. Razaviyayn, M. Hong, Z.Q. Luo, Linear transceiver design for a MIMO interfering broadcast channel achieving max-min fairness, in Proceedings of the 45th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA (2011), pp. 1309–1313Google Scholar
  58. 238.
    T.M. Kim, F. Sun, A. Paulraj, Low-complexity MMSE precoding for coordinated multipoint with per-antenna power constraint. IEEE Signal Process. Lett. 20(4), 395 (2013)Google Scholar
  59. 239.
    F. Negro, I. Ghauri, D.T.M. Slock, Sum rate maximization in the noisy MIMO interfering broadcast channel with partial CSIT via the expected weighted MSE, in Proceedings of the 9th International Symposium on Wireless Communication Systems ISWCS (2012), pp. 576–580Google Scholar
  60. 240.
    D.P. Palomar, V. S., Representation of mutual information via input estimates. IEEE Trans. Inf. Theory 53(2), 453 (2007)Google Scholar
  61. 241.
    M. Ding, S.D. Blostein, Uplink-downlink duality in normalized MSE or SINR under imperfect channel knowledge, in Proceedings of the IEEE Global Communications Conference GLOBECOM, Washington, DC (2007), pp. 3786–3790Google Scholar
  62. 242.
    J.R. Magnus, The exact moments of a ratio of quadratic forms in normal variables. Annales D’Économie et de Statistique 1(4), 95 (1986)Google Scholar
  63. 244.
    Y. Bao, R. Kan, On the moments of ratios of quadratic forms in normal random variables. J. Multivar. Anal. 117, 229 (2013)MathSciNetCrossRefGoogle Scholar
  64. 245.
    O. Lieberman, A Laplace approximation to the moments of a ratio of quadratic forms. Biometrica 81(4), 681 (1994)Google Scholar
  65. 246.
    J. Gorski, F. Pfeuffer, K. Klamroth, Biconvex sets and optimization with biconvex functions: a survey and extensions. Math. Methods Oper. Res. 66(3), 373 (2007)Google Scholar
  66. 247.
    M.S. Lobo, L. Vandenberghe, S. Boyd, H. Lebret, Applications of second-order cone programming. Linear Algebra Appl. 284(1), 193 (1998)Google Scholar
  67. 248.
    S. Shi, M. Schubert, N. Vučić, H. Boche, MMSE optimization with per-base-station power constraints for network MIMO systems, in Proceedings of the IEEE International Conference on Communications ICC (2008), pp. 4106–4110Google Scholar
  68. 249.
    M. Ulbrich, S. Ulbrich, Nichtlineare Optimierung. Mathematik Kompakt (Springer, Basel, 2012)Google Scholar
  69. 250.
    J.P. Gonzalez-Coma, M. Joham, P.M. Castro, L. Castedo, Power minimization in the multiuser MIMO-OFDM broadcast channel with imperfect CSI, in Proceedings of the 22nd European Signal Processing Conference EUSIPCO (2014), pp. 815–819Google Scholar
  70. 251.
    J.P. González-Coma, M. Joham, P.M. Castro, L. Castedo, Power minimization and QoS feasibility region in the multiuser MIMO broadcast channel with imperfect CSI, in Proceedings of the 12th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC, Darmstadt (2013), pp. 619–623Google Scholar
  71. 252.
    H. Boche, M. Schubert, A general theory for SIR balancing. EURASIP J. Wirel. Commun. Netw. 2006(2), 10 (2006)Google Scholar
  72. 253.
    S. Shi, M. Schubert, H. Boche, Downlink MMSE transceiver optimization for multiuser MIMO systems: MMSE balancing. IEEE Trans. Signal Process. 56(8), 3702 (2008)Google Scholar
  73. 254.
    A. Sharpio, D. Dentcheva, A. Ruszczyński, Lectures on Stochastic Programming (Society for Industrial and Applied Mathematics, Philadelphia, 2009)Google Scholar
  74. 255.
    N. Letzepis, A. Grant, Capacity of the multiple spot beam satellite channel with Rician fading. IEEE Trans. Inf. Theory 54(11), 5210 (2008)Google Scholar
  75. 256.
    Y. Ye, Interior-Point Algorithm: Theory and Application. Tech. rep., Department of Management Sciences, University of Iowa City (1995)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andreas Gründinger
    • 1
  1. 1.ErgoldingGermany

Personalised recommendations