Advertisement

Precoder Design for Ergodic Rates with Multiplicative Fading

  • Andreas Gründinger
Chapter
  • 160 Downloads
Part of the Foundations in Signal Processing, Communications and Networking book series (SIGNAL, volume 22)

Abstract

While the QoS and RB optimizations with instantaneous rate constraints feature well-established solutions, solving these problems with ergodic rates is demanding.

References

  1. 5.
    P. Viswanath, D.N.C. Tse, Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality. IEEE Trans. Inf. Theory 49(8), 1912 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 11.
    M. Schubert, H. Boche, QoS-based resource allocation and transceiver optimization. Found. Trends Commun. Inf. Theory 2(6), 383 (2005)zbMATHCrossRefGoogle Scholar
  3. 16.
    M. Rossi, A. Tulino, O. Simeone, A. Haimovich, Non-convex utility maximization in Gaussian MISO broadcast and interference channels, in Proceedings of the 36th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2011), pp. 2960–2963Google Scholar
  4. 26.
    M. Kang, M.S. Alouini, Capacity of MIMO Rician channels. IEEE Trans. Wirel. Commun. 5(1), 112 (2006)CrossRefGoogle Scholar
  5. 63.
    A. Gründinger, A. Barthelme, M. Joham, W. Utschick, Mean square error beamforming in SatCom: uplink-downlink duality with per-feed constraints, in Proceedings of the 11th International Symposium on Wireless Communication Systems ISWCS (2014), pp. 600–605Google Scholar
  6. 65.
    R. Hunger, M. Joham, A complete description of the QoS feasibility region in the vector broadcast channel. IEEE Trans. Signal Process. 57(7), 3870 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 67.
    M. Schubert, H. Boche, Solution of the multiuser downlink beamforming problem with individual SINR constraints. IEEE Trans. Veh. Technol. 53(1), 18 (2004)CrossRefGoogle Scholar
  8. 71.
    M. Bengtsson, B. Ottersten, Optimal downlink beamforming using semidefinite optimization, in Proceedings of the 37th Annual Allerton Conference on Communication, Control, and Computing (1999), pp. 987–996Google Scholar
  9. 74.
    W. Yu, T. Lan, Transmitter optimization for the multi-antenna downlink with per-antenna power constraints. IEEE Trans. Signal Process. 55(6), 2646 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 79.
    A. Tölli, M. Codreanu, M. Juntti, Linear multiuser MIMO transceiver design with quality of service and per-antenna power constraints. IEEE Trans. Signal Process. 56(7), 3049 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 83.
    M. Schubert, H. Boche, Iterative multiuser uplink and downlink beamforming under SINR constraints. IEEE Trans. Veh. Technol. 53(7), 2324 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 89.
    M. Schubert, H. Boche, A generic approach to QoS-based transceiver optimization. IEEE Trans. Commun. 55(8), 1557 (2007)CrossRefGoogle Scholar
  13. 90.
    H. Boche, M. Schubert, A superlinearly and globally convergent algorithm for power control and resource allocation with general interference functions. IEEE/ACM Trans. Netw. 16(2), 383 (2008)CrossRefGoogle Scholar
  14. 92.
    N. Vučić, M. Schubert, Fixed point iteration for max-min SIR balancing with general interference functions, in Proceedings of the 36th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2011), pp. 3456–3459Google Scholar
  15. 102.
    S. Boyd, L. Vandenberghe, Convex Optimization, 1st edn. (Cambridge University Press, New York, NY, 2004)zbMATHCrossRefGoogle Scholar
  16. 104.
    A. Gershman, N. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson, B. Ottersten, Convex optimization-based beamforming. IEEE Signal Process. Mag. 27(3), 62 (2010)CrossRefGoogle Scholar
  17. 110.
    A. Wiesel, Y. Eldar, S. Shamai, Zero-forcing precoding and generalized inverses. IEEE Trans. Signal Process. 56(9), 4409 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 118.
    G. Dartmann, X. Gong, W. Afzal, G. Ascheid, On the duality of the max-min beamforming problem with per-antenna and per-antenna-array power constraints. IEEE Trans. Veh. Technol. 62(2), 606 (2013)CrossRefGoogle Scholar
  19. 120.
    D. Cai, T. Quek, C.W. Tan, S. Low, Max-min weighted SINR in coordinated multicell MIMO downlink, in Proceedings of the 9th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (2011), pp. 286–293Google Scholar
  20. 121.
    S. He, Y. Huang, L. Yang, A. Nallanathan, P. Liu, A multi-cell beamforming design by uplink-downlink max-min SINR duality. IEEE Trans. Wirel. Commun. 11(8), 2858 (2012)Google Scholar
  21. 128.
    B. Hassibi, B.M. Hochwald, How much training is needed in multiple-antenna wireless links?. IEEE Trans. Inf. Theory 49(4), 951 (2003)zbMATHCrossRefGoogle Scholar
  22. 139.
    A. Gründinger, M. Joham, W. Utschick, Design of beamforming in the satellite downlink with static and mobile users, in Proceedings of the 45th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove (2011)Google Scholar
  23. 140.
    A. Gründinger, M. Joham, W. Utschick, Feasibility test and globally optimal beamformer design in the satellite downlink based on instantaneous and ergodic rates, in Proceedings of the 16th International ITG Workshop on Smart Antennas WSA, Dresden (2012), pp. 217–224Google Scholar
  24. 141.
    A. Gründinger, M. Joham, W. Utschick, Bounds on optimal power minimization and rate balancing in the satellite downlink, in Proceedings of the IEEE International Conference on Communications ICC (2012), pp. 3600–3605Google Scholar
  25. 142.
    A. Gründinger, A. Butabayeva, M. Joham, W. Utschick, Chance constrained and ergodic robust QoS power minimization in the satellite downlink, in Proceedings of the 46th Asilomar Conference on Signals, Systems, and Computers (2012), pp. 1147–1151Google Scholar
  26. 143.
    A. Gründinger, D. Leiner, M. Joham, C. Hellings, W. Utschick, Ergodic robust rate balancing for rank-one vector broadcast channels via sequential approximations, in Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2013), pp. 4744–4748Google Scholar
  27. 150.
    B. Marks, G. Wright, Technical note–a general inner approximation algorithm for nonconvex mathematical programs. Oper. Res. 26(4), 681 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 151.
    H. Tuy, F. Al-Khayyal, P. Thach, Monotonic optimization: branch and cut methods, in Essays and Surveys in Global Optimization, Chap. 2 (Springer, New York, NY, 2005), pp. 39–78Google Scholar
  29. 165.
    J.P. González-Coma, A. Gründinger, M. Joham, L. Castedo Ribas, MSE balancing in the MIMO BC: unequal targets and probabilistic interference constraints. IEEE Trans. Signal Process. 65(12), 3293 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 203.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 1st edn. (Dover, New York, 1964)zbMATHGoogle Scholar
  31. 215.
    E. Jorswieck, Lack of duality between SISO Gaussian MAC and BC with statistical CSIT. Electron. Lett. 42(25), 1466 (2006)CrossRefGoogle Scholar
  32. 216.
    H. Boche, M. Schubert, A general duality theory for uplink and downlink beamforming, in IEEE 56th Vehicular Technology Conference, 2002. Proceedings. VTC 2002-Fall, vol. 1 (2002), pp. 87–91Google Scholar
  33. 217.
    J.P. González-Coma, M. Joham, P.M. Castro, L. Castedo, QoS constrained power minimization in the MISO broadcast channel with imperfect CSI. Signal Process. 131, 447 (2017)CrossRefGoogle Scholar
  34. 218.
    A. Pastore, M. Joham, Mutual information bounds for MIMO channels under imperfect receiver CSI, in Proceedings of the 43rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA (2009), pp. 1456–1460Google Scholar
  35. 219.
    M. Joham, A. Gründinger, A. Pastore, J. Fonollosa, W. Utschick, Rate balancing in the vector BC with erroneous CSI at the receivers, in Proceedings of the 47th Annual Conference on Information Sciences and Systems, Baltimore, MD (2013)Google Scholar
  36. 220.
    A. Cuyt, V. Petersen, B. Verdonk, H. Waadeland, W. Jones, Confluent hypergeometric functions, in Handbook of Continued Fractions for Special Functions (Springer, Amsterdam, 2008), pp. 319–341CrossRefGoogle Scholar
  37. 221.
    J. Lindblom, E. Larsson, E. Jorswieck, Parameterization of the MISO interference channel with transmit beamforming and partial channel state information, in Signals, Systems and Computers, 2008 42nd Asilomar Conference on (2008), pp. 1103–1107Google Scholar
  38. 222.
    A. Lapidoth, S. Moser, Capacity bounds via duality with applications to multiple-antenna systems on flat-fading channels. IEEE Trans. Inf. Theory 49(10), 2426 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 223.
    S. Moser, Some expectations of a non-central Chi-square distribution with an even number of degrees of freedom, in 2007 IEEE Region 10 Conference (TENCON) (2007)Google Scholar
  40. 224.
    S. Moser, The fading number of memoryless multiple-input multiple-output fading channels. IEEE Trans. Inf. Theory 53(7), 2652 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 225.
    C. Hellings, M. Joham, W. Utschick, Gradient-based rate balancing for MIMO broadcast channels with linear precoding, in Proceedings of the 15th International ITG Workshop on Smart Antennas WSA (2011)Google Scholar
  42. 226.
    C. Nuzman, Contraction approach to power control, with non-monotonic applications, in Proceedings of the IEEE Global Communications Conference GLOBECOM (2007), pp. 5283–5287Google Scholar
  43. 227.
    D.P. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont, MA, 1999)Google Scholar
  44. 228.
    R. Hunger, D.A. Schmidt, M. Joham, W. Utschick, A general covariance-based optimization framework using orthogonal projections, in Proceedings of the 9th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2008), pp. 76–80Google Scholar
  45. 229.
    A. Bermon, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences (Society for Industrial and Applied Mathematics, Philadelphia, 1994)CrossRefGoogle Scholar
  46. 230.
    S. Stańczak, M. Wiczanowski, H. Boche, Fundamentals of Resource Allocation in Wireless Networks. Foundations in Signal Processing, Communications and Networking, vol. 3, 2nd edn. (Springer, Berlin/Heidelberg, 2008)zbMATHCrossRefGoogle Scholar
  47. 231.
    S. Stańczak, M. Kaliszan, N. Bambos, M. Wiczanowski, A characterization of max-min SIR-balanced power allocation with applications, in Proceedings of the IEEE International Symposium on Information Theory ISIT (2009), pp. 2747–2751Google Scholar
  48. 232.
    M. Grant, S. Boyd, Y. Ye, Disciplined convex programming, in Global Optimization: From Theory to Implementation, Nonconvex Optimization and Its Applications, ed. by L. Liberti, N. Maculan (Springer, New York, 2006), pp. 155–210CrossRefGoogle Scholar
  49. 233.
    S.A. Vavasis, Complexity issues in global optimization: a survey, in Handbook of Global Optimization (Kluwer, Dordrecht, 1995), pp. 27–41zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andreas Gründinger
    • 1
  1. 1.ErgoldingGermany

Personalised recommendations