Advertisement

Multi-User Downlink Communication

  • Andreas Gründinger
Chapter
  • 178 Downloads
Part of the Foundations in Signal Processing, Communications and Networking book series (SIGNAL, volume 22)

Abstract

Simultaneous wireless transmission from a single multi-antenna transmitter, e.g., a base station or a satellite, to K receivers—the users—is a standard model for terrestrial and satellite communication (SatCom) (Tse and Viswanath, Fundamentals of wireless communications. Cambridge University Press, New York, NY, 2008; Arapoglou et al., IEEE Commun Surv Tutorials 13:27, 2011). This multi-user downlink model is also known as a broadcast channel (BC) (e.g., see Tse and Viswanath (Fundamentals of wireless communications. Cambridge University Press, New York, NY, 2008)). The transmitter forms its transmit signal from independent data that are simultaneously conveyed to the users (Cover and Thomas, Elements of information theory. Wiley, Hoboken, NJ, 2006). Therefore, a terminal’s received signal not only includes the intended data signal, but also interfering signals that are destined to other terminals.

References

  1. 1.
    D. Tse, P. Viswanath, Fundamentals of Wireless Communications, 4th edn. (Cambridge University Press, New York, NY, 2008)zbMATHGoogle Scholar
  2. 2.
    P.D. Arapoglou, K. Liolis, M. Bertinelli, A. Panagopoulos, P. Cottis, R. De Gaudenzi, MIMO over satellite: a review. IEEE Commun. Surv. Tutorials 13(1), 27 (2011)Google Scholar
  3. 3.
    T. Cover, J. Thomas, Elements of Information Theory (Wiley Interscience, Hoboken, NJ, 2006)Google Scholar
  4. 4.
    M.H.M. Costa, Writing on dirty paper (Corresp). IEEE Trans. Inf. Theory 29(3), 439 (1983)Google Scholar
  5. 5.
    P. Viswanath, D.N.C. Tse, Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality. IEEE Trans. Inf. Theory 49(8), 1912 (2003)Google Scholar
  6. 6.
    H. Weingarten, Y. Steinberg, S. Shamai, The capacity region of the Gaussian multiple-input multiple-output broadcast channel. IEEE Trans. Inf. Theory 52(9), 3936 (2006)Google Scholar
  7. 7.
    A. Goldsmith, S. Jafar, N. Jindal, S. Vishwanath, Capacity limits of MIMO channels. IEEE J. Sel. Areas Commun. 21(5), 684 (2003)Google Scholar
  8. 8.
    W. Zhang, S. Kotagiri, J. Laneman, On downlink transmission without transmit channel state information and with outage constraints. IEEE Trans. Inf. Theory 55(9), 4240 (2009)Google Scholar
  9. 9.
    F.A. Dietrich, P. Breun, W. Utschick, Robust Tomlinson Harashima precoding for the wireless broadcast channel. IEEE Trans. Signal Process. 55(2), 631 (2007)Google Scholar
  10. 10.
    F. Rashid-Farrokhi, K. Liu, L. Tassiulas, Transmit beamforming and power control for cellular wireless systems. IEEE J. Sel. Areas Commun. 16(8), 1437 (1998)Google Scholar
  11. 11.
    M. Schubert, H. Boche, QoS-based resource allocation and transceiver optimization. Found. Trends Commun. Inf. Theory 2(6), 383 (2005)Google Scholar
  12. 12.
    E. Karipidis, N. Sidiropoulos, Z.Q. Luo, Quality of service and max-min fair transmit beamforming to multiple cochannel multicast groups. IEEE Trans. Signal Process. 56(3), 1268 (2008)Google Scholar
  13. 13.
    D. Christopoulos, S. Chatzinotas, B. Ottersten, Weighted fair multicast multigroup beamforming under per-antenna power constraints. IEEE Trans. Signal Process. 62(19), 5132 (2014)Google Scholar
  14. 14.
    M. Hanif, L.N. Tran, A. Tölli, M. Juntti, S. Glisic, Efficient solutions for weighted sum rate maximization in multicellular networks with channel uncertainties. IEEE Trans. Signal Process. 61(22), 5659 (2013)Google Scholar
  15. 15.
    W. Utschick, J. Brehmer, Monotonic optimization framework for coordinated beamforming in multi-cell networks. IEEE Trans. Signal Process. 59(99) (2011)Google Scholar
  16. 16.
    M. Rossi, A. Tulino, O. Simeone, A. Haimovich, Non-convex utility maximization in Gaussian MISO broadcast and interference channels, in Proceedings of the 36th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2011), pp. 2960–2963Google Scholar
  17. 17.
    E. Björnson, G. Zheng, M. Bengtsson, B. Ottersten, Robust monotonic optimization framework for multicell MISO systems. IEEE Trans. Signal Process. 60(5), 2508 (2012)Google Scholar
  18. 18.
    S. Srinivasa, S. Jafar, The optimality of transmit beamforming: a unified view. IEEE Trans. Inf. Theory 53(4), 1558 (2007)Google Scholar
  19. 19.
    E. Larsson, E. Jorswieck, Competition versus cooperation on the MISO interference channel. IEEE J. Sel. Areas Commun. 26(7), 1059 (2008)Google Scholar
  20. 20.
    E. Larsson, F. Tufvesson, O. Edfors, T. Marzetta, Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186 (2014)Google Scholar
  21. 22.
    D. Neumann, A. Gründinger, M. Joham, W. Utschick, Rate-balancing in massive MIMO using statistical precoding, in Proceedings of the 14th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2015), pp. 226–230Google Scholar
  22. 23.
    E. Chiu, V. Lau, S. Zhang, B. Mok, Precoder design for multi-antenna partial decode-and-forward (PDF) cooperative systems with statistical CSIT and MMSE-SIC receivers. IEEE Trans. Wirel. Commun. 11(4), 1343 (2012)Google Scholar
  23. 24.
    P. Wu, R. Schober, Cooperative beamforming for single-carrier frequency-domain equalization systems with multiple relays. IEEE Trans. Wirel. Commun. 11(6), 2276 (2012)Google Scholar
  24. 25.
    M. Kang, M.S. Alouini, Capacity of correlated MIMO Rayleigh channels. IEEE Trans. Wirel. Commun. 5(1), 143 (2006)Google Scholar
  25. 28.
    M. Matthaiou, G. Alexandropoulos, H.Q. Ngo, E. Larsson, Analytic framework for the effective rate of MISO fading channels. IEEE Trans. Commun. 60(6), 1741 (2012)Google Scholar
  26. 29.
    N. Beaulieu, J. Hu, A closed-form expression for the outage probability of decode-and-forward Relaying in dissimilar Rayleigh fading channels. IEEE Commun. Lett. 10(12), 813 (2006)Google Scholar
  27. 32.
    A. Moustakas, S. Simon, On the outage capacity of correlated multiple-path MIMO channels. IEEE Trans. Inf. Theory 53(11), 3887 (2007)Google Scholar
  28. 33.
    D. Kontaxis, G. Tsoulos, S. Karaboyas, Ergodic capacity optimization for single-stream beamforming transmission in MISO Rician fading channels. IEEE Trans. Veh. Technol. 62(2), 628 (2013)Google Scholar
  29. 34.
    M. Razaviyayn, M.S. Boroujeni, Z.Q. Luo, A stochastic weighted MMSE approach to sum rate maximization for a MIMO interference channel, in Proceedings of the 12th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2013), pp. 325–329Google Scholar
  30. 35.
    S. Vorobyov, H. Chen, A. Gershman, On the relationship between robust minimum variance beamformers with probabilistic and worst-case distortionless response constraints. IEEE Trans. Signal Process. 56(11), 5719 (2008)Google Scholar
  31. 36.
    K.Y. Wang, A.C. So, T.H. Chang, W.K. Ma, C.Y. Chi, Outage constrained robust transmit optimization for multiuser MISO downlinks: tractable approximations by conic optimization. IEEE Trans. Signal Process. 62(21), 5690 (2014)Google Scholar
  32. 37.
    S.A. Vorobyov, A.B. Gershman, Z.Q. Luo, Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem. IEEE Trans. Signal Process. 51(2), 313 (2003)Google Scholar
  33. 38.
    S. Shahbazpanahi, A.B. Gershman, Z.Q. Luo, K.M. Wong, Robust adaptive beamforming for general-rank signal models. IEEE Trans. Signal Process. 51(9), 2257 (2003)Google Scholar
  34. 39.
    J. Li, P. Stoica, Z. Wang, On robust capon beamforming and diagonal loading. IEEE Trans. Signal Process. 51(7), 1702 (2003)Google Scholar
  35. 40.
    J. Li, P. Stoica (eds.), Robust Adaptive Beamforming (Wiley, New York, 2005)Google Scholar
  36. 41.
    F. Dietrich, Robust Signal Processing for Wireless Communications (Springer, New York, 2007)zbMATHGoogle Scholar
  37. 42.
    H. Du, P.J. Chung, A probabilistic approach for robust leakage-based MU-MIMO downlink beamforming with imperfect channel state information. IEEE Trans. Wirel. Commun. 11(3), 1239 (2012)Google Scholar
  38. 43.
    M. Joham, P. Castro, W. Utschick, L. Castedo, Robust precoding with limited feedback design based on precoding MSE for MU-MISO systems. IEEE Trans. Signal Process. 60(6), 3101 (2012)Google Scholar
  39. 44.
    N. Vučić, H. Boche, A tractable method for chance-constrained power control in downlink multiuser MISO systems with channel uncertainty. IEEE Signal Process. Lett. 16(5), 346 (2009)Google Scholar
  40. 45.
    M. Medra, Y. Huang, W.K. Ma, T.N. Davidson, Low-complexity robust MISO downlink precoder design under imperfect CSI. IEEE Trans. Signal Process. 64(12), 3237 (2016)Google Scholar
  41. 46.
    N. Zorba, A. Pérez-Neira, Robust multibeam opportunistic schemes under quality of service constraints, in Proceedings of the IEEE International Conference on Communications ICC (2007), pp. 5371–5376Google Scholar
  42. 47.
    M. Botros Shenouda, L. Lampe, Quasi-convex designs of max-min linear BC precoding with outage QoS constraints, in Proceedings of the 6th International Symposium on Wireless Communication Systems ISWCS (2009), pp. 156–160Google Scholar
  43. 51.
    X. He, Y.C. Wu, Probabilistic QoS Constrained robust downlink multiuser MIMO transceiver design with arbitrarily distributed channel uncertainty. IEEE Trans. Wirel. Commun. 12(12), 6292 (2013)Google Scholar
  44. 52.
    D. Christopoulos, S. Chatzinotas, G. Zheng, J. Grotz, B. Ottersten, Linear and nonlinear techniques for multibeam joint processing in satellite communications. EURASIP J. Wirel. Commun. Netw. 1(162), 1 (2012)Google Scholar
  45. 53.
    L. Cottatellucci, M. Debbah, E. Casini, R. Rinaldo, R. Mueller, M. Neri, G. Gallinaro, Interference mitigation techniques for broadband satellite system, in Proceedings of the 24th AIAA International Communications Satellite Systems Conference ICSSC 2006 (2006)Google Scholar
  46. 56.
    J. Arnau, B. Devillers, C. Mosquera, A. Pérez-Neira, Performance study of multiuser interference mitigation schemes for hybrid broadband multibeam satellite architectures. EURASIP J. Wirel. Commun. Netw. 1(132), 1 (2012)Google Scholar
  47. 57.
    G. Zheng, S. Chatzinotas, B. Ottersten, Generic optimization of linear precoding in multibeam satellite systems. IEEE Trans. Wirel. Commun. 11(6), 2308 (2012)Google Scholar
  48. 58.
    X. Lei, L. Cottatellucci, S. Ghanem, Adaptive beamforming in mobile, massively multiuser satellite communications: a system perspective, in Proceedings of the 13th International Workshop on Signal Processing for Space Communications SPSC (2014), pp. 51–58Google Scholar
  49. 59.
    P.D. Arapoglou, E. Michailidis, A. Panagopoulos, A. Kanatas, R. Prieto-Cerdeira, The land mobile earth-space channel. IEEE Veh. Technol. Mag. 6(2), 44 (2011)Google Scholar
  50. 60.
    B. Devillers, A. Pérez-Neira, C. Mosquera, Joint linear precoding and beamforming for the forward link of multi-beam broadband satellite systems, in Proceedings of the IEEE Global Communications Conference GLOBECOM (2011)Google Scholar
  51. 63.
    A. Gründinger, A. Barthelme, M. Joham, W. Utschick, Mean square error beamforming in SatCom: uplink-downlink duality with per-feed constraints, in Proceedings of the 11th International Symposium on Wireless Communication Systems ISWCS (2014), pp. 600–605Google Scholar
  52. 64.
    A. Gharanjik, B. Shankar, P.D. Arapoglou, M. Bengtsson, B. Ottersten, Robust precoding with phase uncertainty, in Proceedings of the 39th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2015), pp. 3083–3087Google Scholar
  53. 65.
    R. Hunger, M. Joham, A complete description of the QoS feasibility region in the vector broadcast channel. IEEE Trans. Signal Process. 57(7), 3870 (2010)Google Scholar
  54. 66.
    R. Hunger, Analysis and Transceiver Design for the MIMO Broadcast Channel. Foundations in Signal Processing, Communications and Networking, vol. 8 (Springer, Berlin/Heidelberg, 2013)Google Scholar
  55. 67.
    M. Schubert, H. Boche, Solution of the multiuser downlink beamforming problem with individual SINR constraints. IEEE Trans. Veh. Technol. 53(1), 18 (2004)Google Scholar
  56. 68.
    S. Shi, M. Schubert, H. Boche, Downlink MMSE transceiver optimization for multiuser MIMO systems: duality and sum-MSE minimization. IEEE Trans. Signal Process. 55(11), 5436 (2007)Google Scholar
  57. 69.
    F. Rashid-Farrokhi, L. Tassiulas, K. Liu, Joint optimal power control and beamforming in wireless networks using antenna arrays. IEEE Trans. Commun. 46(10), 1313 (1998)Google Scholar
  58. 71.
    M. Bengtsson, B. Ottersten, Optimal downlink beamforming using semidefinite optimization, in Proceedings of the 37th Annual Allerton Conference on Communication, Control, and Computing (1999), pp. 987–996Google Scholar
  59. 73.
    A. Wiesel, Y. Eldar, S. Shamai, Linear precoding via conic optimization for fixed MIMO receivers. IEEE Trans. Signal Process. 54(1), 161 (2006)Google Scholar
  60. 74.
    W. Yu, T. Lan, Transmitter optimization for the multi-antenna downlink with per-antenna power constraints. IEEE Trans. Signal Process. 55(6), 2646 (2007)Google Scholar
  61. 75.
    R.D. Yates, A framework for uplink power control in cellular radio systems. IEEE J. Sel. Areas Commun. 13(7), 1341 (1995)Google Scholar
  62. 76.
    E. Jorswieck, H. Boche, Rate balancing for the multi-antenna Gaussian broadcast channel, in IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications, vol. 2 (2002), pp. 545–549Google Scholar
  63. 77.
    S. Shi, M. Schubert, H. Boche, Capacity balancing for multiuser MIMO systems, in Proceedings of the 32th International Conference on Acoustics, Speech, and Signal Processing ICASSP, vol. 3 (2007), pp. 397–400Google Scholar
  64. 78.
    K. Cumanan, J. Tang, S. Lambotharan, Rate balancing based linear transceiver design for multiuser MIMO system with multiple linear transmit covariance constraints, in Proceedings of the IEEE International Conference on Communications ICC (2011)Google Scholar
  65. 79.
    A. Tölli, M. Codreanu, M. Juntti, Linear multiuser MIMO transceiver design with quality of service and per-antenna power constraints. IEEE Trans. Signal Process. 56(7), 3049 (2008)Google Scholar
  66. 80.
    W. Yang, G. Xu, Optimal downlink power assignment for smart antenna systems, in Proceedings of the 23th International Conference on Acoustics, Speech, and Signal Processing ICASSP (1998), pp. 3337–3340Google Scholar
  67. 81.
    M. Schubert, H. Boche, A unifying theory for uplink and downlink multiuser beamforming in International Zurich Seminar on Broadband Communications, Access, Transmission, and Networking (2002), pp. 27-1–27-6Google Scholar
  68. 82.
    D. Tse, P. Viswanath, Downlink-uplink duality and effective bandwidths, in Proceedings of the IEEE International Symposium on Information Theory (2002), p. 52Google Scholar
  69. 83.
    M. Schubert, H. Boche, Iterative multiuser uplink and downlink beamforming under SINR constraints. IEEE Trans. Veh. Technol. 53(7), 2324 (2005)Google Scholar
  70. 84.
    J. Zander, Performance of optimum transmitter power control in cellular radio systems. IEEE Trans. Veh. Technol. 41(1), 57 (1992)Google Scholar
  71. 85.
    M. Hirsch, H. Smith, Chapter 4: monotone dynamical systems, in Handbook of Differential Equations: Ordinary Differential Equations, vol. 2, ed. by P.D.A. Cañada, A. Fonda (North-Holland, Amsterdam, 2006), pp. 239–357CrossRefGoogle Scholar
  72. 86.
    V. Berinde, Iterative Approximation of Fixed Points (Springer, New York, 2007)zbMATHGoogle Scholar
  73. 87.
    U. Krause, P. Ranft, A limit set trichotomy for monotone nonlinear dynamical systems. Nonlinear Anal. Theory Methods Appl. 19(4), 375 (1992)Google Scholar
  74. 88.
    J. Zander, Distributed cochannel interference control in cellular radio systems. IEEE Trans. Veh. Technol. 41(3), 305 (1992)Google Scholar
  75. 89.
    M. Schubert, H. Boche, A generic approach to QoS-based transceiver optimization. IEEE Trans. Commun. 55(8), 1557 (2007)Google Scholar
  76. 90.
    H. Boche, M. Schubert, A superlinearly and globally convergent algorithm for power control and resource allocation with general interference functions. IEEE/ACM Trans. Netw. 16(2), 383 (2008)Google Scholar
  77. 91.
    M. Schubert, H. Boche, Interference Calculus. Foundations in Signal Processing, Communications and Networking, vol. 7, 1st edn. (Springer, Berlin/Heidelberg, 2012)Google Scholar
  78. 92.
    N. Vučić, M. Schubert, Fixed point iteration for max-min SIR balancing with general interference functions, in Proceedings of the 36th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2011), pp. 3456–3459Google Scholar
  79. 93.
    S. Kandukuri, S. Boyd, Optimal power control in interference-limited fading wireless channels with outage-probability specifications. IEEE Trans. Wirel. Commun. 1(1), 46 (2002)Google Scholar
  80. 94.
    S. Boyd, S.J. Kim, L. Vandenberghe, A. Hassibi, A tutorial on geometric programming. Optim. Eng. 8(1), 67 (2007)Google Scholar
  81. 95.
    M. Chiang, C. wei Tan, D. Palomar, D. O’Neill, D. Julian, Power control by geometric programming. IEEE Trans. Wirel. Commun. 6(7), 2640 (2007)Google Scholar
  82. 96.
    D. Cai, T. Quek, C.W. Tan, A unified analysis of max-min weighted SINR for MIMO downlink system. IEEE Trans. Signal Process. 59(8), 3850 (2011)Google Scholar
  83. 97.
    J. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(1), 625 (1999)Google Scholar
  84. 98.
    K. Toh, R. Tütüncü, M. Todd, SDPT3—a matlab software package for semidefinite programming. Optim. Methods Softw. 11(1), 545 (1999)Google Scholar
  85. 99.
    M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming (2009), http://stanford.edu/~boyd/cvx
  86. 100.
    Y. Nesterov, A. Nemirovski, Interior Point Polynomial Algorithms in Convex Programming (Studies in Applied Mathematics (SIAM), Philadelphia, PA, 1994)CrossRefGoogle Scholar
  87. 101.
    Z.Q. Luo, W. Yu, Z.Q. Luo, W. Yu, An introduction to convex optimization for communications and signal processing. IEEE J. Sel. Areas Commun. 24(8), 1426 (2006)Google Scholar
  88. 102.
    S. Boyd, L. Vandenberghe, Convex Optimization, 1st edn. (Cambridge University Press, New York, NY, 2004)CrossRefGoogle Scholar
  89. 103.
    A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization. Analysis, Algorithms, and Engineering Applications (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001)Google Scholar
  90. 104.
    A. Gershman, N. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson, B. Ottersten, Convex optimization-based beamforming. IEEE Signal Process. Mag. 27(3), 62 (2010)Google Scholar
  91. 105.
    Y. Huang, D. Palomar, S. Zhang, Lorentz-positive maps and quadratic matrix inequalities with applications to robust MISO transmit beamforming. IEEE Trans. Signal Process. 61(5), 1121 (2013)Google Scholar
  92. 106.
    L. Vandenberghe, S. Boyd, Semidefinite programming. SIAM Rev. 3(1), 49 (1996)Google Scholar
  93. 107.
    H. Wolkowicz, R. Saigal, L. Vandenberghe, Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, 1st edn. (Kluwer, Norwell, MS, 2000)CrossRefGoogle Scholar
  94. 108.
    Y. Huang, D. Palomar, Rank-constrained separable semidefinite programming with applications to optimal beamforming. IEEE Trans. Signal Process. 58(2), 664 (2010)Google Scholar
  95. 109.
    Z.Q. Luo, W.K. Ma, A.C. So, Y. Ye, S. Zhang, Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag. 27(3), 20 (2010)Google Scholar
  96. 110.
    A. Wiesel, Y. Eldar, S. Shamai, Zero-forcing precoding and generalized inverses. IEEE Trans. Signal Process. 56(9), 4409 (2008)Google Scholar
  97. 111.
    M. Joham, C. Hellings, R. Hunger, QoS feasibility for the MIMO broadcast channel: robust formulation and multi-carrier systems, in Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (2010), pp. 610–614Google Scholar
  98. 112.
    H. Feyzmahdavian, M. Johansson, T. Charalambous, Contractive interference functions and rates of convergence of distributed power control laws. IEEE Trans. Wirel. Commun. 11(12), 4494 (2012)Google Scholar
  99. 113.
    H. Boche, M. Schubert, The structure of general interference functions and applications. IEEE Trans. Inf. Theory 54(11), 4980 (2008)Google Scholar
  100. 114.
    E. Jorswieck, B. Ottersten, A. Sezgin, A. Paulraj, Guaranteed performance region in fading orthogonal space-time coded broadcast channels. EURASIP J. Wirel. Commun. Netw. 2008(39), 1 (2008)Google Scholar
  101. 115.
    M. Joham, R. Hunger, Feasible rate region of the MIMO broadcast channel with linear transceivers, in Proceedings of the 14th International ITG Workshop on Smart Antennas WSA (2010), pp. 342–349Google Scholar
  102. 116.
    T. Bogale, L. Vandendorpe, Robust sum MSE optimization for downlink multiuser MIMO systems with arbitrary power constraint: generalized duality approach. IEEE Trans. Signal Process. 60(4), 1862 (2012)Google Scholar
  103. 118.
    G. Dartmann, X. Gong, W. Afzal, G. Ascheid, On the duality of the max-min beamforming problem with per-antenna and per-antenna-array power constraints. IEEE Trans. Veh. Technol. 62(2), 606 (2013)Google Scholar
  104. 119.
    G.H. Golub, C.F. van Loan, Matrix Computations, 3rd edn. (The Johns Hopkins University Press, Baltimore, NY, 1996)zbMATHGoogle Scholar
  105. 120.
    D. Cai, T. Quek, C.W. Tan, S. Low, Max-min weighted SINR in coordinated multicell MIMO downlink, in Proceedings of the 9th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (2011), pp. 286–293Google Scholar
  106. 121.
    S. He, Y. Huang, L. Yang, A. Nallanathan, P. Liu, A multi-cell beamforming design by uplink-downlink max-min SINR duality. IEEE Trans. Wirel. Commun. 11(8), 2858 (2012)Google Scholar
  107. 122.
    D. Luenberger, Quasi-convex programming. SIAM J. Appl. Math. 16(5), 1090 (1968)Google Scholar
  108. 123.
    J. Penot, M. Volle, Surrogate programming and multipliers in quasi-convex programming. SIAM J. Control Optim. 42(6), 1994 (2004)Google Scholar
  109. 124.
    F. Glover, Surrogate constraint duality in mathematical programming. Oper. Res. 23(3), 434 (1975)Google Scholar
  110. 125.
    A.B. Gershman, Z.Q. Luo, S. Shahbazpanahi, Robust Adaptive Beamforming Based on Worst-Case Performance Optimization, Chap. 2 (Wiley, New York, 2005), pp. 49–89Google Scholar
  111. 126.
    J. Lindblom, E. Larsson, E. Jorswieck, Parameterization of the MISO IFC rate region: the case of partial channel state information. IEEE Trans. Wirel. Commun. 9(2), 500 (2010)Google Scholar
  112. 127.
    E. Karipidis, A. Gründinger, J. Lindblom, E. Larsson, Pareto-optimal beamforming for the MISO interference channel with partial CSI, in Proceedings of the 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (2009), pp. 5–8Google Scholar
  113. 128.
    B. Hassibi, B.M. Hochwald, How much training is needed in multiple-antenna wireless links?. IEEE Trans. Inf. Theory 49(4), 951 (2003)Google Scholar
  114. 129.
    N. Jindal, MIMO broadcast channels with finite-rate feedback. IEEE Trans. Inf. Theory 52(11), 5045 (2006)Google Scholar
  115. 130.
    S. Ji, S. Wu, A.C. So, W.K. Ma, Multi-group multicast beamforming in cognitive radio networks via rank-two transmit beamformed alamouti space-time coding, in Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2013), pp. 4409–4413Google Scholar
  116. 131.
    L. Li, A. Goldsmith, Capacity and optimal resource allocation for fading broadcast channels: I. Ergodic capacity. IEEE Trans. Inf. Theory 47(3), 1083 (2001)Google Scholar
  117. 133.
    T. Yoo, A. Goldsmith, Capacity and power allocation for fading MIMO channels with channel estimation error. IEEE Trans. Inf. Theory 52(5), 2203 (2006)Google Scholar
  118. 134.
    F.A. Dietrich, W. Utschick, P. Breun, Linear precoding based on a stochastic MSE criterion, in 13th European Signal Processing Conference (2005)Google Scholar
  119. 136.
    M. Ding, S. Blostein, MIMO minimum total MSE transceiver design with imperfect CSI at both ends. IEEE Trans. Signal Process. 57(3), 1141 (2009)Google Scholar
  120. 137.
    R. Henrion. Introduction to chance constrained programming. Introduction Tutorial in E-Collection https://stoprog.org (2003), https://stoprog.org
  121. 138.
    M. Shenouda, T. Davidson, Probabilistically-constrained approaches to the design of the multiple antenna downlink, in Proceedings of the 42nd Asilomar Conference on Signals, Systems, and Computers (2008), pp. 1120–1124Google Scholar
  122. 139.
    A. Gründinger, M. Joham, W. Utschick, Design of beamforming in the satellite downlink with static and mobile users, in Proceedings of the 45th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove (2011)Google Scholar
  123. 143.
    A. Gründinger, D. Leiner, M. Joham, C. Hellings, W. Utschick, Ergodic robust rate balancing for rank-one vector broadcast channels via sequential approximations, in Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2013), pp. 4744–4748Google Scholar
  124. 144.
    A. Gründinger, R. Bethenod, M. Joham, M. Riemensberger, W. Utschick, Optimal power allocation for the chance-constrained vector broadcast channel and rank-one channel approximation, in Proceedings of the 12th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2013), pp. 31–35Google Scholar
  125. 147.
    A. Gründinger, M. Joham, W. Utschick, Balancing for Interference-Limited Multi-User Satellite Communications, Chap. 8 (Springer, New York, 2015), pp. 165–198Google Scholar
  126. 148.
    G. Alfano, A.M. Tulino, A. Lozano, S. Verdú, Capacity of MIMO channels with one-sided correlation, in IEEE Eighth International Symposium on Spread Spectrum Techniques and Applications (2005), pp. 515–519Google Scholar
  127. 149.
    H. Shin, M.Z. Win, J.H. Lee, M. Chiani, On the capacity of doubly correlated MIMO channels. IEEE Trans. Wirel. Commun. 5(8), 2253 (2006)Google Scholar
  128. 150.
    B. Marks, G. Wright, Technical note–a general inner approximation algorithm for nonconvex mathematical programs. Oper. Res. 26(4), 681 (1978)Google Scholar
  129. 151.
    H. Tuy, F. Al-Khayyal, P. Thach, Monotonic optimization: branch and cut methods, in Essays and Surveys in Global Optimization, Chap. 2 (Springer, New York, NY, 2005), pp. 39–78Google Scholar
  130. 152.
    D. Guo, S. Shamai, S. Verdú, Mutual information and minimum mean-square error in Gaussian channels. IEEE Trans. Inf. Theory 51(4), 1261 (2005)Google Scholar
  131. 155.
    S. Christensen, R. Agarwal, E. Carvalho, J. Cioffi, Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design. IEEE Trans. Wirel. Commun. 7(12), 4792 (2008)Google Scholar
  132. 157.
    A. Gründinger, M. Joham, W. Utschick, Stochastic transceiver design in point-to-point MIMO channels with imperfect CSI, in Proceedings of the 15th International ITG Workshop on Smart Antennas WSA, Aachen (2011)Google Scholar
  133. 158.
    A. Gründinger, M. Joham, W. Utschick, Stochastic transceiver design in multi-antenna channels with statistical channel state information, in Proceedings of the 36th International Conference on Acoustics, Speech, and Signal Processing ICASSP, Prague (2011)Google Scholar
  134. 159.
    F. Wang, X. Yuan, S.C. Liew, D. Guo, Wireless MIMO switching: weighted sum mean square error and sum rate optimization. IEEE Trans. Inf. Theory 59(9), 5297 (2013)Google Scholar
  135. 160.
    M. Kießling, Statistical Analysis and Transmit Prefiltering for MIMO Wireless Systems in Correlated Fading Environments, Dissertation, University of Stuttgart (2004)Google Scholar
  136. 161.
    R. Hunger, M. Joham, W. Utschick, On the MSE-duality of the broadcast channel and the multiple access channel. IEEE Trans. Signal Process. 57(2), 698 (2009)Google Scholar
  137. 162.
    M. Joham, M. Vonbun, W. Utschick, MIMO BC/MAC MSE duality with imperfect transmitter and perfect receiver CSI, in Proceedings of the 11th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2010)Google Scholar
  138. 163.
    J.P. González-Coma, A. Gründinger, M. Joham, L. Castedo Ribas, W. Utschick, Multi-stream MIMO MSE balancing with generalized power constraints, in Proceedings of the 15th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2016)Google Scholar
  139. 164.
    J.P. González-Coma, A. Gründinger, M. Joham, L. Castedo Ribas, W. Utschick, On MSE balancing in the MIMO broadcast channel with unequal targets, in Proceedings of the 19th International ITG Workshop on Smart Antennas WSA, Munich (2016)Google Scholar
  140. 165.
    J.P. González-Coma, A. Gründinger, M. Joham, L. Castedo Ribas, MSE balancing in the MIMO BC: unequal targets and probabilistic interference constraints. IEEE Trans. Signal Process. 65(12), 3293 (2017)Google Scholar
  141. 166.
    F. Boccardi, H. Huang, M. Trivellato, Multiuser eigenmode transmission for MIMO broadcast channels with limited feedback, in Proceedings of the 7th IEEE International Workshop on Signal Processing Advances in Wireless Communications SPAWC (2007)Google Scholar
  142. 167.
    M. Kobayashi, G. Caire, Joint beamforming and scheduling for a multi-antenna downlink with imperfect transmitter channel knowledge. IEEE J. Sel. Areas Commun. 25(7), 1468 (2007)Google Scholar
  143. 168.
    S. Vorobyov, Y. Rong, A. Gershman, Robust adaptive beamforming using probability-constrained optimization, in IEEE/SP 13th Workshop on Statistical Signal Processing (2005), pp. 934–939Google Scholar
  144. 170.
    N. Vučić, H. Boche, Robust QoS-constrained optimization of downlink multiuser MISO systems. IEEE Trans. Signal Process. 57(2), 714 (2009)Google Scholar
  145. 171.
    K.Y. Wang, T.H. Chang, W.K. Ma, A.C. So, C.Y. Chi, Probabilistic SINR constrained robust transmit beamforming: a Bernstein-type inequality based conservative approach, in Proceedings of the 36th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2011), pp. 3080–3083Google Scholar
  146. 172.
    I. Bechar, A Bernstein-type inequality for stochastic processes of quadratic forms Gaussian variables (2009). https://arxiv.org/abs/0909.3595
  147. 173.
    K.Y. Wang, T.H. Chang, W.K. Ma, C.Y. Chi, A semidefinite relaxation based conservative approach to robust transmit beamforming with probabilistic SINR constraints, in Proceedings of the 18th European Signal Processing Conference EUSIPCO (2010), pp. 407–411Google Scholar
  148. 174.
    J.P. Imhof, Computing the distribution of quadratic forms in normal variables. Biometrika 48(3/4), 419 (1961)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andreas Gründinger
    • 1
  1. 1.ErgoldingGermany

Personalised recommendations