Skip to main content

Future Prospects and Challenges of Black Phosphorous Materials

  • Chapter
  • First Online:
Black Phosphorus

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The cutting-edge developments in the field of black phosphorus (BP) nanostructures have contributed significantly to the progress of 2D nanomaterials in a broad range of foreseeable applications. This chapter intends to outline the remaining challenges and prospects of different BP nanomaterials, including the bulk phase, few-layer BP structures, nanoribbons, nanotubes, and heterostructures. Potential perspectives in different application areas including but not limited to electronic devices, sensors, biomedical devices, and catalysis are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

AFM:

Atomic force microscopy

AIBN:

Azodiisobutyronitrile

ALD:

Atomic layer deposition

BP:

Black phosphorus

CVD:

Chemical vapor deposition

DFT:

Density-functional theory

FET:

Field-effect transistor

GNR:

Graphene-based nanoribbon

h-BN:

Hexagonal boron nitride

IR:

Infrared

LMH:

Layered metal hydroxide

MD:

Molecular dynamics

MOF:

Metal–organic framework

NMP:

N-methylpyrrolidone

OFET:

Organic field effect transistor

OLED:

Organic light emitting diodes

OPV:

Organic photovoltaic materials

PDDA:

Poly dimethyldiallyl ammonium chloride

PNR:

Phosphorene nanoribbon

RP:

Red phosphorus

SAC:

Single atom catalyst

STEM:

Scanning transmission electron microscopy

STM:

Scanning tunnelling microscopy

TMD:

Transition metal dichalcogenide

vdW:

van der Waals

References

  1. Fei, R., Yang, L.: Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14(5), 2884–2889 (2014). https://doi.org/10.1021/nl500935z

    Article  CAS  Google Scholar 

  2. Zhang, S., Guo, S., Chen, Z., Wang, Y., Gao, H., Gómez-Herrero, J., Ares, P., Zamora, F., Zhu, Z., Zeng, H.: Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soc. Rev. 47(3), 982–1021 (2018). https://doi.org/10.1039/c7cs00125h

    Article  CAS  Google Scholar 

  3. Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z

    Article  CAS  Google Scholar 

  4. Liu, H., Du, Y., Deng, Y., Ye, P.D.: Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44(9), 2732–2743 (2015). https://doi.org/10.1039/c4cs00257a

    Article  CAS  Google Scholar 

  5. Akhtar, M., Anderson, G., Zhao, R., Alruqi, A., Mroczkowska, J.E., Sumanasekera, G., Jasinski, J.B.: Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Mater. Appl. 1(1), 5 (2017). https://doi.org/10.1038/s41699-017-0007-5

  6. Lei, W., Liu, G., Zhang, J., Liu, M.: Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46(12), 3492–3509 (2017). https://doi.org/10.1039/c7cs00021a

    Article  CAS  Google Scholar 

  7. Qiao, J., Kong, X., Hu, Z.-X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). https://doi.org/10.1038/ncomms5475

    Article  CAS  Google Scholar 

  8. Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35

    Article  CAS  Google Scholar 

  9. Liu, Q., Zhang, X., Abdalla, L.B., Fazzio, A., Zunger, A.: Switching a normal insulator into a topological insulator via electric field with application to phosphorene. Nano Lett. 15(2), 1222–1228 (2015). https://doi.org/10.1021/nl5043769

    Article  CAS  Google Scholar 

  10. Ren, J., Zhang, C., Li, J., Guo, Z., Xiao, H., Zhong, J.: Strain engineering of magnetic state in vacancy-doped phosphorene. Phys. Lett. A 380(40), 3270–3277 (2016). https://doi.org/10.1016/j.physleta.2016.07.055

    Article  CAS  Google Scholar 

  11. Pumera, M., Sofer, Z.: 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv. Mater. 29(21), 1605299 (2017). https://doi.org/10.1002/adma.201605299

    Article  CAS  Google Scholar 

  12. Chowdhury, C., Datta, A.: Exotic physics and chemistry of two-dimensional phosphorus: phosphorene. J. Phys. Chem. Lett. 8(13), 2909–2916 (2017). https://doi.org/10.1021/acs.jpclett.7b01290

    Article  CAS  Google Scholar 

  13. Ling, X., Wang, H., Huang, S., Xia, F., Dresselhaus, M.S.: The renaissance of black phosphorus. Proc. Natl. Acad. Sci. 112(15), 4523 (2015). https://doi.org/10.1073/pnas.1416581112

    Article  CAS  Google Scholar 

  14. Sorkin, V., Cai, Y., Ong, Z., Zhang, G., Zhang, Y.W.: Recent advances in the study of phosphorene and its nanostructures. Crit. Rev. Solid State Mater. Sci. 42(1), 1–82 (2017). https://doi.org/10.1080/10408436.2016.1182469

    Article  CAS  Google Scholar 

  15. Jing, Y., Zhang, X., Zhou, Z.: Phosphorene: what can we know from computations? WIREs Comput. Mol. Sci. 6(1), 5–19 (2016). https://doi.org/10.1002/wcms.1234

    Article  CAS  Google Scholar 

  16. Kou, L., Chen, C., Smith, S.C.: Phosphorene: fabrication, properties, and applications. J. Phys. Chem. Lett. 6(14), 2794–2805 (2015). https://doi.org/10.1021/acs.jpclett.5b01094

    Article  CAS  Google Scholar 

  17. Kulish, V.V., Malyi, O.I., Persson, C., Wu, P.: Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys. Chem. Chem. Phys. 17(21), 13921–13928 (2015). https://doi.org/10.1039/c5cp01502b

    Article  CAS  Google Scholar 

  18. Pumera, M.: Phosphorene and black phosphorus for sensing and biosensing. TrAC Trends Anal. Chem. 93, 1–6 (2017). https://doi.org/10.1016/j.trac.2017.05.002

    Article  CAS  Google Scholar 

  19. Çakır, D., Sahin, H., Peeters, F.M.: Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B 90(20), 205421 (2014)

    Article  Google Scholar 

  20. Zhang, G., Zhang, Y.-W.: Strain effects on thermoelectric properties of two-dimensional materials. Mech. Mater. 91, 382–398 (2015). https://doi.org/10.1016/j.mechmat.2015.03.009

    Article  Google Scholar 

  21. Du, Y., Luo, Z., Liu, H., Xu, X., Ye, P.D.: Anisotropic properties of black phosphorus. In: Avouris, P., Low, T., Heinz, T.F. (eds.) 2D Materials: Properties and Devices, pp. 413–434. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316681619.023

  22. Hanlon, D., Backes, C., Doherty, E., Cucinotta, C.S., Berner, N.C., Boland, C., Lee, K., Harvey, A., Lynch, P., Gholamvand, Z., Zhang, S., Wang, K., Moynihan, G., Pokle, A., Ramasse, Q.M., McEvoy, N., Blau, W.J., Wang, J., Abellan, G., Hauke, F., Hirsch, A., Sanvito, S., O’Regan, D.D., Duesberg, G.S., Nicolosi, V., Coleman, J.N.: Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015). https://doi.org/10.1038/ncomms9563

    Article  CAS  Google Scholar 

  23. Zhang, J., Liu, H.J., Cheng, L., Wei, J., Liang, J.H., Fan, D.D., Shi, J., Tang, X.F., Zhang, Q.J.: Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 4, 6452 (2014). https://doi.org/10.1038/srep06452

    Article  CAS  Google Scholar 

  24. Taghizadeh Sisakht, E., Zare, M.H., Fazileh, F.: Scaling laws of band gaps of phosphorene nanoribbons: a tight-binding calculation. Phys. Rev. B 91(8), 085409 (2015). https://doi.org/10.1103/PhysRevB.91.085409

    Article  CAS  Google Scholar 

  25. Han, X., Stewart, H.M., Shevlin, S.A., Catlow, C.R.A., Guo, Z.X.: Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Lett. 14(8), 4607–4614 (2014). https://doi.org/10.1021/nl501658d

    Article  CAS  Google Scholar 

  26. Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C.: Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 118(25), 14051–14059 (2014). https://doi.org/10.1021/jp505257g

    Article  CAS  Google Scholar 

  27. Sorkin, V., Zhang, Y.W.: The structure and elastic properties of phosphorene edges. Nanotechnology 26(23), 235707 (2015). https://doi.org/10.1088/0957-4484/26/23/235707

    Article  CAS  Google Scholar 

  28. Sresht, V., Pádua, A.A.H., Blankschtein, D.: Liquid-phase exfoliation of phosphorene: design rules from molecular dynamics simulations. ACS Nano 9(8), 8255–8268 (2015). https://doi.org/10.1021/acsnano.5b02683

    Article  CAS  Google Scholar 

  29. Gusmão, R., Sofer, Z., Pumera, M.: Black phosphorus rediscovered: from bulk material to monolayers. Angew. Chem. Int. Ed. 56(28), 8052–8072 (2017). https://doi.org/10.1002/anie.201610512

    Article  CAS  Google Scholar 

  30. Hirsch, A., Hauke, F.: Post-graphene 2D chemistry: the emerging field of molybdenum disulfide and black phosphorus functionalization. Angew. Chem. Int. Ed. 57(16), 4338–4354 (2018). https://doi.org/10.1002/anie.201708211

    Article  CAS  Google Scholar 

  31. Pei, J., Gai, X., Yang, J., Wang, X., Yu, Z., Choi, D.-Y., Luther-Davies, B., Lu, Y.: Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 7, 10450 (2016). https://doi.org/10.1038/ncomms10450

    Article  CAS  Google Scholar 

  32. Liu, Y., Gao, P., Zhang, T., Zhu, X., Zhang, M., Chen, M., Du, P., Wang, G.-W., Ji, H., Yang, J., Yang, S.: Azide passivation of black phosphorus nanosheets: covalent functionalization affords ambient stability enhancement. Angew. Chem. Int. Ed. 58(5), 1479–1483 (2019). https://doi.org/10.1002/anie.201813218

    Article  CAS  Google Scholar 

  33. Doganov, R.A., O’Farrell, E.C.T., Koenig, S.P., Yeo, Y., Ziletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Watanabe, K., Taniguchi, T., Neto, A.H.C., Özyilmaz, B.: Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun. 6, 6647 (2015). https://doi.org/10.1038/ncomms7647

    Article  CAS  Google Scholar 

  34. Wang, G., Slough, W.J., Pandey, R., Karna, S.P.: Degradation of phosphorene in air: understanding at atomic level. 2D Mater. 3(2), 025011 (2016). https://doi.org/10.1088/2053-1583/3/2/025011

    Article  Google Scholar 

  35. Abellán, G., Lloret, V., Mundloch, U., Marcia, M., Neiss, C., Görling, A., Varela, M., Hauke, F., Hirsch, A.: Noncovalent functionalization of black phosphorus. Angew. Chem. Int. Ed. 55(47), 14557–14562 (2016). https://doi.org/10.1002/anie.201604784

    Article  CAS  Google Scholar 

  36. Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., Castro Neto, A.H.: Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016). https://doi.org/10.1038/natrevmats.2016.61

    Article  CAS  Google Scholar 

  37. Ryder, C.R., Wood, J.D., Wells, S.A., Yang, Y., Jariwala, D., Marks, T.J., Schatz, G.C., Hersam, M.C.: Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8, 597 (2016). https://doi.org/10.1038/nchem.2505

    Article  CAS  Google Scholar 

  38. Shao, L., Sun, H., Miao, L., Chen, X., Han, M., Sun, J., Liu, S., Li, L., Cheng, F., Chen, J.: Facile preparation of NH2-functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 6(6), 2494–2499 (2018). https://doi.org/10.1039/c7ta10884b

    Article  CAS  Google Scholar 

  39. Ienco, A., Manca, G., Peruzzini, M., Mealli, C.: Modelling strategies for the covalent functionalization of 2D phosphorene. Dalton Trans. 47(48), 17243–17256 (2018). https://doi.org/10.1039/c8dt03628d

    Article  CAS  Google Scholar 

  40. van Druenen, M., Davitt, F., Collins, T., Glynn, C., O’Dwyer, C., Holmes, J.D., Collins, G.: Covalent functionalization of few-layer black phosphorus using iodonium salts and comparison to diazonium modified black phosphorus. Chem. Mater. 30(14), 4667–4674 (2018). https://doi.org/10.1021/acs.chemmater.8b01306

    Article  CAS  Google Scholar 

  41. Hu, H., Gao, H., Gao, L., Li, F., Xu, N., Long, X., Hu, Y., Jin, J., Ma, J.: Covalent functionalization of black phosphorus nanoflakes by carbon free radicals for durable air and water stability. Nanoscale 10(13), 5834–5839 (2018). https://doi.org/10.1039/c7nr06085h

    Article  CAS  Google Scholar 

  42. Feng, Q., Liu, H., Zhu, M., Shang, J., Liu, D., Cui, X., Shen, D., Kou, L., Mao, D., Zheng, J., Li, C., Zhang, J., Xu, H., Zhao, J.: Electrostatic functionalization and passivation of water-exfoliated few-layer black phosphorus by poly dimethyldiallyl ammonium chloride and its ultrafast laser application. ACS Appl. Mater. Interfaces 10(11), 9679–9687 (2018). https://doi.org/10.1021/acsami.8b00556

    Article  CAS  Google Scholar 

  43. Scotognella, F., Kriegel, I., Sassolini, S.: Covalent functionalized black phosphorus quantum dots. Opt. Mater. 75, 521–524 (2018). https://doi.org/10.1016/j.optmat.2017.11.016

    Article  CAS  Google Scholar 

  44. Cao, Y., Tian, X., Gu, J., Liu, B., Zhang, B., Song, S., Fan, F., Chen, Y.: Covalent functionalization of black phosphorus with conjugated polymer for information storage. Angew. Chem. Int. Ed. 57(17), 4543–4548 (2018). https://doi.org/10.1002/anie.201712675

    Article  CAS  Google Scholar 

  45. Sadki, S., Drissi, L.B.: Tunable optical and excitonic properties of phosphorene via oxidation. J. Phys.: Condens. Matter 30(25), 255703 (2018). https://doi.org/10.1088/1361-648x/aac403

    Article  CAS  Google Scholar 

  46. Sun, H., Shang, Y., Yang, Y., Guo, M.: Realization of N-type semiconducting of phosphorene through surface metal doping and work function study. J. Nanomater. 2018, 9 (2018). https://doi.org/10.1155/2018/6863890

    Article  CAS  Google Scholar 

  47. Wang, K., Wang, H., Zhang, M., Zhao, W., Liu, Y., Qin, H.: The electronic and magnetic properties of multi-atom doped black phosphorene. Nanomaterials 9(2), 311 (2019). https://doi.org/10.3390/nano9020311

    Article  CAS  Google Scholar 

  48. Sun, X., Luan, S., Shen, H., Lei, S.: Effect of metal doping on carbon monoxide adsorption on phosphorene: a first-principles study. Superlattices Microstruct. 124, 168–175 (2018). https://doi.org/10.1016/j.spmi.2018.09.037

    Article  CAS  Google Scholar 

  49. Lei, S.Y., Luan, S., Yu, H.: Co-doped phosphorene: enhanced sensitivity of CO gas sensing. Int. J. Mod. Phys. B 32(06), 1850068 (2018). https://doi.org/10.1142/s0217979218500686

    Article  CAS  Google Scholar 

  50. Musle, V., Choudhary, S.: Tuning the optical properties of phosphorene by adsorption of alkali metals and halogens. Opt. Quant. Electron. 50(7), 285 (2018). https://doi.org/10.1007/s11082-018-1548-3

    Article  CAS  Google Scholar 

  51. Lei, S.Y., Yu, Z.Y., Shen, H.Y., Sun, X.L., Wan, N., Yu, H.: CO adsorption on metal-decorated phosphorene. ACS Omega 3(4), 3957–3965 (2018). https://doi.org/10.1021/acsomega.8b00133

    Article  CAS  Google Scholar 

  52. Zhang, H.-p., Du, A., Shi, Q.-b., Zhou, Y., Zhang, Y., Tang, Y.: Adsorption behavior of CO2 on pristine and doped phosphorenes: a dispersion corrected DFT study. J. CO2 Utilization 24, 463–470 (2018). https://doi.org/10.1016/j.jcou.2018.02.005

    Article  CAS  Google Scholar 

  53. Zhang, H.-p., Hu, W., Du, A., Lu, X., Zhang, Y.-p., Zhou, J., Lin, X., Tang, Y.: Doped phosphorene for hydrogen capture: a DFT study. Appl. Surf. Sci. 433(Supplement C), 249–255 (2018). https://doi.org/10.1016/j.apsusc.2017.09.243

    Article  CAS  Google Scholar 

  54. Kuang, A., Ran, Y., Peng, B., Kuang, M., Wang, G., Yuan, H., Tian, C., Chen, H.: Adsorption and decomposition of metal decorated phosphorene toward H2S, HCN and NH3 molecules. Appl. Surf. Sci. 473, 242–250 (2019). https://doi.org/10.1016/j.apsusc.2018.12.131

    Article  CAS  Google Scholar 

  55. Yan, S., Wang, B., Wang, Z., Hu, D., Xu, X., Wang, J., Shi, Y.: Supercritical carbon dioxide-assisted rapid synthesis of few-layer black phosphorus for hydrogen peroxide sensing. Biosens. Bioelectron. 80(Supplement C), 34–38 (2016). https://doi.org/10.1016/j.bios.2016.01.043

    Article  CAS  Google Scholar 

  56. Li, P., Zhang, D., Liu, J., Chang, H., Ye, Sun, Yin, N.: Air-stable black phosphorus devices for ion sensing. ACS Appl. Mater. Interfaces 7(44), 24396–24402 (2015). https://doi.org/10.1021/acsami.5b07712

    Article  CAS  Google Scholar 

  57. Wei, Z., Zhang, Y., Wang, S., Wang, C., Ma, J.: Fe-doped phosphorene for the nitrogen reduction reaction. J. Mater. Chem. A 6(28), 13790–13796 (2018). https://doi.org/10.1039/c8ta03989e

    Article  CAS  Google Scholar 

  58. Yang, Q., Meng, R.S., Jiang, J.K., Liang, Q.H., Tan, C.J., Cai, M., Sun, X., Yang, D.G., Ren, T.L., Chen, X.P.: First-principles study of sulfur dioxide sensor based on phosphorenes. IEEE Electron Dev. L 37(5), 660–662 (2016). https://doi.org/10.1109/led.2016.2543243

    Article  CAS  Google Scholar 

  59. Kakaei, K., Esrafili, M.D., Ehsani, A.: Introduction to catalysis. In: Kakaei, K., Esrafili, M.D., Ehsani, A. (eds.) Interface Science and Technology, vol. 27, pp. 1–21. Elsevier (2019). https://doi.org/10.1016/B978-0-12-814523-4.00001-0

    Google Scholar 

  60. Makhlouf, A.S.H., Tiginyanu, I.: Nanocoatings and Ultra-Thin Films: Technologies and Applications. Elsevier Science (2011)

    Google Scholar 

  61. Luo, Y., Ren, C., Wang, S., Li, S., Zhang, P., Yu, J., Sun, M., Sun, Z., Tang, W.: Adsorption of transition metals on black phosphorene: a first-principles study. Nanoscale Res. Lett. 13(1), 282 (2018). https://doi.org/10.1186/s11671-018-2696-x

    Article  CAS  Google Scholar 

  62. Caporali, M., Serrano-Ruiz, M., Telesio, F., Heun, S., Nicotra, G., Spinella, C., Peruzzini, M.: Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. Chem. Commun. 53(79), 10946–10949 (2017). https://doi.org/10.1039/c7cc05906j

    Article  CAS  Google Scholar 

  63. Zhang, L., Gao, L.-F., Li, L., Hu, C.-X., Yang, Q.-Q., Zhu, Z.-Y., Peng, R., Wang, Q., Peng, Y., Jin, J., Zhang, H.-L.: Negatively charged 2D black phosphorus for highly efficient covalent functionalization. Mater. Chem. Front. 2(9), 1700–1706 (2018). https://doi.org/10.1039/c8qm00237a

    Article  CAS  Google Scholar 

  64. Gong, K., Zhang, L., Ji, W., Guo, H.: Electrical contacts to monolayer black phosphorus: a first-principles investigation. Phys. Rev. B 90(12), 125441 (2014). https://doi.org/10.1103/PhysRevB.90.125441

    Article  CAS  Google Scholar 

  65. Chen, X., Wu, Y., Wu, Z., Han, Y., Xu, S., Wang, L., Ye, W., Han, T., He, Y., Cai, Y., Wang, N.: High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 6, 7315 (2015). https://doi.org/10.1038/ncomms8315

    Article  CAS  Google Scholar 

  66. Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). https://doi.org/10.1038/ncomms5458

    Article  CAS  Google Scholar 

  67. Dai, J., Zeng, X.C.: Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5(7), 1289–1293 (2014). https://doi.org/10.1021/jz500409m

    Article  CAS  Google Scholar 

  68. Wu, M., Fu, H., Zhou, L., Yao, K., Zeng, X.C.: Nine new phosphorene polymorphs with non-honeycomb structures: a much extended family. Nano Lett. 15(5), 3557–3562 (2015). https://doi.org/10.1021/acs.nanolett.5b01041

    Article  CAS  Google Scholar 

  69. Mukhopadhyay, T.K., Datta, A.: Ordering and dynamics for the formation of two-dimensional molecular crystals on black phosphorene. J. Phys. Chem. C 121(18), 10210–10223 (2017). https://doi.org/10.1021/acs.jpcc.7b02480

    Article  CAS  Google Scholar 

  70. Zhao, J., Liu, X., Chen, Z.: Frustrated Lewis Pair catalysts in two dimensions: B/Al-doped phosphorenes as promising catalysts for hydrogenation of small unsaturated molecules. ACS Catal. 7(1), 766–771 (2017). https://doi.org/10.1021/acscatal.6b02727

    Article  CAS  Google Scholar 

  71. Wang, L., Sofer, Z., Pumera, M.: Voltammetry of layered black phosphorus: electrochemistry of multilayer phosphorene. ChemElectroChem 2(3), 324–327 (2015). https://doi.org/10.1002/celc.201402363

    Article  CAS  Google Scholar 

  72. Li, W., Yang, Y., Zhang, G., Zhang, Y.-W.: Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 15(3), 1691–1697 (2015). https://doi.org/10.1021/nl504336h

    Article  CAS  Google Scholar 

  73. Koenig, S.P., Doganov, R.A., Schmidt, H., Neto, A.H.C., Özyilmaz, B.: Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104(10), 103106 (2014). https://doi.org/10.1063/1.4868132

    Article  CAS  Google Scholar 

  74. Lu, J., Wu, J., Carvalho, A., Ziletti, A., Liu, H., Tan, J., Chen, Y., Castro Neto, A.H., Özyilmaz, B., Sow, C.H.: bandgap engineering of phosphorene by laser oxidation toward functional 2D materials. ACS Nano 9(10), 10411–10421 (2015). https://doi.org/10.1021/acsnano.5b04623

    Article  CAS  Google Scholar 

  75. Dai, J., Zeng, X.C.: Structure and stability of two dimensional phosphorene with =O or =NH functionalization. RSC Adv. 4(89), 48017–48021 (2014). https://doi.org/10.1039/c4ra02850c

    Article  CAS  Google Scholar 

  76. Carvalho, A., Neto, A.H.C.: Phosphorene: overcoming the oxidation barrier. ACS Central Sci. 1(6), 289–291 (2015). https://doi.org/10.1021/acscentsci.5b00304

    Article  CAS  Google Scholar 

  77. Avsar, A., Vera-Marun, I.J., Tan, J.Y., Watanabe, K., Taniguchi, T., Castro Neto, A.H., Özyilmaz, B.: Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9(4), 4138–4145 (2015). https://doi.org/10.1021/acsnano.5b00289

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ghambarian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azizi, Z., Ghashghaee, M., Ghambarian, M. (2020). Future Prospects and Challenges of Black Phosphorous Materials. In: Inamuddin, Boddula, R., Asiri, A. (eds) Black Phosphorus. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29555-4_8

Download citation

Publish with us

Policies and ethics