Future Prospects and Challenges of Black Phosphorous Materials

  • Zahra Azizi
  • Mohammad Ghashghaee
  • Mehdi GhambarianEmail author
Part of the Engineering Materials book series (ENG.MAT.)


The cutting-edge developments in the field of black phosphorus (BP) nanostructures have contributed significantly to the progress of 2D nanomaterials in a broad range of foreseeable applications. This chapter intends to outline the remaining challenges and prospects of different BP nanomaterials, including the bulk phase, few-layer BP structures, nanoribbons, nanotubes, and heterostructures. Potential perspectives in different application areas including but not limited to electronic devices, sensors, biomedical devices, and catalysis are briefly reviewed.





Atomic force microscopy




Atomic layer deposition


Black phosphorus


Chemical vapor deposition


Density-functional theory


Field-effect transistor


Graphene-based nanoribbon


Hexagonal boron nitride




Layered metal hydroxide


Molecular dynamics


Metal–organic framework




Organic field effect transistor


Organic light emitting diodes


Organic photovoltaic materials


Poly dimethyldiallyl ammonium chloride


Phosphorene nanoribbon


Red phosphorus


Single atom catalyst


Scanning transmission electron microscopy


Scanning tunnelling microscopy


Transition metal dichalcogenide


van der Waals


  1. 1.
    Fei, R., Yang, L.: Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14(5), 2884–2889 (2014). Scholar
  2. 2.
    Zhang, S., Guo, S., Chen, Z., Wang, Y., Gao, H., Gómez-Herrero, J., Ares, P., Zamora, F., Zhu, Z., Zeng, H.: Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soc. Rev. 47(3), 982–1021 (2018). Scholar
  3. 3.
    Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). Scholar
  4. 4.
    Liu, H., Du, Y., Deng, Y., Ye, P.D.: Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44(9), 2732–2743 (2015). Scholar
  5. 5.
    Akhtar, M., Anderson, G., Zhao, R., Alruqi, A., Mroczkowska, J.E., Sumanasekera, G., Jasinski, J.B.: Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Mater. Appl. 1(1), 5 (2017).
  6. 6.
    Lei, W., Liu, G., Zhang, J., Liu, M.: Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46(12), 3492–3509 (2017). Scholar
  7. 7.
    Qiao, J., Kong, X., Hu, Z.-X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). Scholar
  8. 8.
    Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). Scholar
  9. 9.
    Liu, Q., Zhang, X., Abdalla, L.B., Fazzio, A., Zunger, A.: Switching a normal insulator into a topological insulator via electric field with application to phosphorene. Nano Lett. 15(2), 1222–1228 (2015). Scholar
  10. 10.
    Ren, J., Zhang, C., Li, J., Guo, Z., Xiao, H., Zhong, J.: Strain engineering of magnetic state in vacancy-doped phosphorene. Phys. Lett. A 380(40), 3270–3277 (2016). Scholar
  11. 11.
    Pumera, M., Sofer, Z.: 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv. Mater. 29(21), 1605299 (2017). Scholar
  12. 12.
    Chowdhury, C., Datta, A.: Exotic physics and chemistry of two-dimensional phosphorus: phosphorene. J. Phys. Chem. Lett. 8(13), 2909–2916 (2017). Scholar
  13. 13.
    Ling, X., Wang, H., Huang, S., Xia, F., Dresselhaus, M.S.: The renaissance of black phosphorus. Proc. Natl. Acad. Sci. 112(15), 4523 (2015). Scholar
  14. 14.
    Sorkin, V., Cai, Y., Ong, Z., Zhang, G., Zhang, Y.W.: Recent advances in the study of phosphorene and its nanostructures. Crit. Rev. Solid State Mater. Sci. 42(1), 1–82 (2017). Scholar
  15. 15.
    Jing, Y., Zhang, X., Zhou, Z.: Phosphorene: what can we know from computations? WIREs Comput. Mol. Sci. 6(1), 5–19 (2016). Scholar
  16. 16.
    Kou, L., Chen, C., Smith, S.C.: Phosphorene: fabrication, properties, and applications. J. Phys. Chem. Lett. 6(14), 2794–2805 (2015). Scholar
  17. 17.
    Kulish, V.V., Malyi, O.I., Persson, C., Wu, P.: Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys. Chem. Chem. Phys. 17(21), 13921–13928 (2015). Scholar
  18. 18.
    Pumera, M.: Phosphorene and black phosphorus for sensing and biosensing. TrAC Trends Anal. Chem. 93, 1–6 (2017). Scholar
  19. 19.
    Çakır, D., Sahin, H., Peeters, F.M.: Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B 90(20), 205421 (2014)CrossRefGoogle Scholar
  20. 20.
    Zhang, G., Zhang, Y.-W.: Strain effects on thermoelectric properties of two-dimensional materials. Mech. Mater. 91, 382–398 (2015). Scholar
  21. 21.
    Du, Y., Luo, Z., Liu, H., Xu, X., Ye, P.D.: Anisotropic properties of black phosphorus. In: Avouris, P., Low, T., Heinz, T.F. (eds.) 2D Materials: Properties and Devices, pp. 413–434. Cambridge University Press, Cambridge (2017).
  22. 22.
    Hanlon, D., Backes, C., Doherty, E., Cucinotta, C.S., Berner, N.C., Boland, C., Lee, K., Harvey, A., Lynch, P., Gholamvand, Z., Zhang, S., Wang, K., Moynihan, G., Pokle, A., Ramasse, Q.M., McEvoy, N., Blau, W.J., Wang, J., Abellan, G., Hauke, F., Hirsch, A., Sanvito, S., O’Regan, D.D., Duesberg, G.S., Nicolosi, V., Coleman, J.N.: Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015). Scholar
  23. 23.
    Zhang, J., Liu, H.J., Cheng, L., Wei, J., Liang, J.H., Fan, D.D., Shi, J., Tang, X.F., Zhang, Q.J.: Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 4, 6452 (2014). Scholar
  24. 24.
    Taghizadeh Sisakht, E., Zare, M.H., Fazileh, F.: Scaling laws of band gaps of phosphorene nanoribbons: a tight-binding calculation. Phys. Rev. B 91(8), 085409 (2015). Scholar
  25. 25.
    Han, X., Stewart, H.M., Shevlin, S.A., Catlow, C.R.A., Guo, Z.X.: Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Lett. 14(8), 4607–4614 (2014). Scholar
  26. 26.
    Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C.: Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 118(25), 14051–14059 (2014). Scholar
  27. 27.
    Sorkin, V., Zhang, Y.W.: The structure and elastic properties of phosphorene edges. Nanotechnology 26(23), 235707 (2015). Scholar
  28. 28.
    Sresht, V., Pádua, A.A.H., Blankschtein, D.: Liquid-phase exfoliation of phosphorene: design rules from molecular dynamics simulations. ACS Nano 9(8), 8255–8268 (2015). Scholar
  29. 29.
    Gusmão, R., Sofer, Z., Pumera, M.: Black phosphorus rediscovered: from bulk material to monolayers. Angew. Chem. Int. Ed. 56(28), 8052–8072 (2017). Scholar
  30. 30.
    Hirsch, A., Hauke, F.: Post-graphene 2D chemistry: the emerging field of molybdenum disulfide and black phosphorus functionalization. Angew. Chem. Int. Ed. 57(16), 4338–4354 (2018). Scholar
  31. 31.
    Pei, J., Gai, X., Yang, J., Wang, X., Yu, Z., Choi, D.-Y., Luther-Davies, B., Lu, Y.: Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 7, 10450 (2016). Scholar
  32. 32.
    Liu, Y., Gao, P., Zhang, T., Zhu, X., Zhang, M., Chen, M., Du, P., Wang, G.-W., Ji, H., Yang, J., Yang, S.: Azide passivation of black phosphorus nanosheets: covalent functionalization affords ambient stability enhancement. Angew. Chem. Int. Ed. 58(5), 1479–1483 (2019). Scholar
  33. 33.
    Doganov, R.A., O’Farrell, E.C.T., Koenig, S.P., Yeo, Y., Ziletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Watanabe, K., Taniguchi, T., Neto, A.H.C., Özyilmaz, B.: Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun. 6, 6647 (2015). Scholar
  34. 34.
    Wang, G., Slough, W.J., Pandey, R., Karna, S.P.: Degradation of phosphorene in air: understanding at atomic level. 2D Mater. 3(2), 025011 (2016). Scholar
  35. 35.
    Abellán, G., Lloret, V., Mundloch, U., Marcia, M., Neiss, C., Görling, A., Varela, M., Hauke, F., Hirsch, A.: Noncovalent functionalization of black phosphorus. Angew. Chem. Int. Ed. 55(47), 14557–14562 (2016). Scholar
  36. 36.
    Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., Castro Neto, A.H.: Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016). Scholar
  37. 37.
    Ryder, C.R., Wood, J.D., Wells, S.A., Yang, Y., Jariwala, D., Marks, T.J., Schatz, G.C., Hersam, M.C.: Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8, 597 (2016). Scholar
  38. 38.
    Shao, L., Sun, H., Miao, L., Chen, X., Han, M., Sun, J., Liu, S., Li, L., Cheng, F., Chen, J.: Facile preparation of NH2-functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 6(6), 2494–2499 (2018). Scholar
  39. 39.
    Ienco, A., Manca, G., Peruzzini, M., Mealli, C.: Modelling strategies for the covalent functionalization of 2D phosphorene. Dalton Trans. 47(48), 17243–17256 (2018). Scholar
  40. 40.
    van Druenen, M., Davitt, F., Collins, T., Glynn, C., O’Dwyer, C., Holmes, J.D., Collins, G.: Covalent functionalization of few-layer black phosphorus using iodonium salts and comparison to diazonium modified black phosphorus. Chem. Mater. 30(14), 4667–4674 (2018). Scholar
  41. 41.
    Hu, H., Gao, H., Gao, L., Li, F., Xu, N., Long, X., Hu, Y., Jin, J., Ma, J.: Covalent functionalization of black phosphorus nanoflakes by carbon free radicals for durable air and water stability. Nanoscale 10(13), 5834–5839 (2018). Scholar
  42. 42.
    Feng, Q., Liu, H., Zhu, M., Shang, J., Liu, D., Cui, X., Shen, D., Kou, L., Mao, D., Zheng, J., Li, C., Zhang, J., Xu, H., Zhao, J.: Electrostatic functionalization and passivation of water-exfoliated few-layer black phosphorus by poly dimethyldiallyl ammonium chloride and its ultrafast laser application. ACS Appl. Mater. Interfaces 10(11), 9679–9687 (2018). Scholar
  43. 43.
    Scotognella, F., Kriegel, I., Sassolini, S.: Covalent functionalized black phosphorus quantum dots. Opt. Mater. 75, 521–524 (2018). Scholar
  44. 44.
    Cao, Y., Tian, X., Gu, J., Liu, B., Zhang, B., Song, S., Fan, F., Chen, Y.: Covalent functionalization of black phosphorus with conjugated polymer for information storage. Angew. Chem. Int. Ed. 57(17), 4543–4548 (2018). Scholar
  45. 45.
    Sadki, S., Drissi, L.B.: Tunable optical and excitonic properties of phosphorene via oxidation. J. Phys.: Condens. Matter 30(25), 255703 (2018). Scholar
  46. 46.
    Sun, H., Shang, Y., Yang, Y., Guo, M.: Realization of N-type semiconducting of phosphorene through surface metal doping and work function study. J. Nanomater. 2018, 9 (2018). Scholar
  47. 47.
    Wang, K., Wang, H., Zhang, M., Zhao, W., Liu, Y., Qin, H.: The electronic and magnetic properties of multi-atom doped black phosphorene. Nanomaterials 9(2), 311 (2019). Scholar
  48. 48.
    Sun, X., Luan, S., Shen, H., Lei, S.: Effect of metal doping on carbon monoxide adsorption on phosphorene: a first-principles study. Superlattices Microstruct. 124, 168–175 (2018). Scholar
  49. 49.
    Lei, S.Y., Luan, S., Yu, H.: Co-doped phosphorene: enhanced sensitivity of CO gas sensing. Int. J. Mod. Phys. B 32(06), 1850068 (2018). Scholar
  50. 50.
    Musle, V., Choudhary, S.: Tuning the optical properties of phosphorene by adsorption of alkali metals and halogens. Opt. Quant. Electron. 50(7), 285 (2018). Scholar
  51. 51.
    Lei, S.Y., Yu, Z.Y., Shen, H.Y., Sun, X.L., Wan, N., Yu, H.: CO adsorption on metal-decorated phosphorene. ACS Omega 3(4), 3957–3965 (2018). Scholar
  52. 52.
    Zhang, H.-p., Du, A., Shi, Q.-b., Zhou, Y., Zhang, Y., Tang, Y.: Adsorption behavior of CO2 on pristine and doped phosphorenes: a dispersion corrected DFT study. J. CO2 Utilization 24, 463–470 (2018). Scholar
  53. 53.
    Zhang, H.-p., Hu, W., Du, A., Lu, X., Zhang, Y.-p., Zhou, J., Lin, X., Tang, Y.: Doped phosphorene for hydrogen capture: a DFT study. Appl. Surf. Sci. 433(Supplement C), 249–255 (2018). Scholar
  54. 54.
    Kuang, A., Ran, Y., Peng, B., Kuang, M., Wang, G., Yuan, H., Tian, C., Chen, H.: Adsorption and decomposition of metal decorated phosphorene toward H2S, HCN and NH3 molecules. Appl. Surf. Sci. 473, 242–250 (2019). Scholar
  55. 55.
    Yan, S., Wang, B., Wang, Z., Hu, D., Xu, X., Wang, J., Shi, Y.: Supercritical carbon dioxide-assisted rapid synthesis of few-layer black phosphorus for hydrogen peroxide sensing. Biosens. Bioelectron. 80(Supplement C), 34–38 (2016). Scholar
  56. 56.
    Li, P., Zhang, D., Liu, J., Chang, H., Ye, Sun, Yin, N.: Air-stable black phosphorus devices for ion sensing. ACS Appl. Mater. Interfaces 7(44), 24396–24402 (2015). Scholar
  57. 57.
    Wei, Z., Zhang, Y., Wang, S., Wang, C., Ma, J.: Fe-doped phosphorene for the nitrogen reduction reaction. J. Mater. Chem. A 6(28), 13790–13796 (2018). Scholar
  58. 58.
    Yang, Q., Meng, R.S., Jiang, J.K., Liang, Q.H., Tan, C.J., Cai, M., Sun, X., Yang, D.G., Ren, T.L., Chen, X.P.: First-principles study of sulfur dioxide sensor based on phosphorenes. IEEE Electron Dev. L 37(5), 660–662 (2016). Scholar
  59. 59.
    Kakaei, K., Esrafili, M.D., Ehsani, A.: Introduction to catalysis. In: Kakaei, K., Esrafili, M.D., Ehsani, A. (eds.) Interface Science and Technology, vol. 27, pp. 1–21. Elsevier (2019). Scholar
  60. 60.
    Makhlouf, A.S.H., Tiginyanu, I.: Nanocoatings and Ultra-Thin Films: Technologies and Applications. Elsevier Science (2011)Google Scholar
  61. 61.
    Luo, Y., Ren, C., Wang, S., Li, S., Zhang, P., Yu, J., Sun, M., Sun, Z., Tang, W.: Adsorption of transition metals on black phosphorene: a first-principles study. Nanoscale Res. Lett. 13(1), 282 (2018). Scholar
  62. 62.
    Caporali, M., Serrano-Ruiz, M., Telesio, F., Heun, S., Nicotra, G., Spinella, C., Peruzzini, M.: Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. Chem. Commun. 53(79), 10946–10949 (2017). Scholar
  63. 63.
    Zhang, L., Gao, L.-F., Li, L., Hu, C.-X., Yang, Q.-Q., Zhu, Z.-Y., Peng, R., Wang, Q., Peng, Y., Jin, J., Zhang, H.-L.: Negatively charged 2D black phosphorus for highly efficient covalent functionalization. Mater. Chem. Front. 2(9), 1700–1706 (2018). Scholar
  64. 64.
    Gong, K., Zhang, L., Ji, W., Guo, H.: Electrical contacts to monolayer black phosphorus: a first-principles investigation. Phys. Rev. B 90(12), 125441 (2014). Scholar
  65. 65.
    Chen, X., Wu, Y., Wu, Z., Han, Y., Xu, S., Wang, L., Ye, W., Han, T., He, Y., Cai, Y., Wang, N.: High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 6, 7315 (2015). Scholar
  66. 66.
    Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). Scholar
  67. 67.
    Dai, J., Zeng, X.C.: Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5(7), 1289–1293 (2014). Scholar
  68. 68.
    Wu, M., Fu, H., Zhou, L., Yao, K., Zeng, X.C.: Nine new phosphorene polymorphs with non-honeycomb structures: a much extended family. Nano Lett. 15(5), 3557–3562 (2015). Scholar
  69. 69.
    Mukhopadhyay, T.K., Datta, A.: Ordering and dynamics for the formation of two-dimensional molecular crystals on black phosphorene. J. Phys. Chem. C 121(18), 10210–10223 (2017). Scholar
  70. 70.
    Zhao, J., Liu, X., Chen, Z.: Frustrated Lewis Pair catalysts in two dimensions: B/Al-doped phosphorenes as promising catalysts for hydrogenation of small unsaturated molecules. ACS Catal. 7(1), 766–771 (2017). Scholar
  71. 71.
    Wang, L., Sofer, Z., Pumera, M.: Voltammetry of layered black phosphorus: electrochemistry of multilayer phosphorene. ChemElectroChem 2(3), 324–327 (2015). Scholar
  72. 72.
    Li, W., Yang, Y., Zhang, G., Zhang, Y.-W.: Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 15(3), 1691–1697 (2015). Scholar
  73. 73.
    Koenig, S.P., Doganov, R.A., Schmidt, H., Neto, A.H.C., Özyilmaz, B.: Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104(10), 103106 (2014). Scholar
  74. 74.
    Lu, J., Wu, J., Carvalho, A., Ziletti, A., Liu, H., Tan, J., Chen, Y., Castro Neto, A.H., Özyilmaz, B., Sow, C.H.: bandgap engineering of phosphorene by laser oxidation toward functional 2D materials. ACS Nano 9(10), 10411–10421 (2015). Scholar
  75. 75.
    Dai, J., Zeng, X.C.: Structure and stability of two dimensional phosphorene with =O or =NH functionalization. RSC Adv. 4(89), 48017–48021 (2014). Scholar
  76. 76.
    Carvalho, A., Neto, A.H.C.: Phosphorene: overcoming the oxidation barrier. ACS Central Sci. 1(6), 289–291 (2015). Scholar
  77. 77.
    Avsar, A., Vera-Marun, I.J., Tan, J.Y., Watanabe, K., Taniguchi, T., Castro Neto, A.H., Özyilmaz, B.: Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9(4), 4138–4145 (2015). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Zahra Azizi
    • 1
  • Mohammad Ghashghaee
    • 2
  • Mehdi Ghambarian
    • 3
    Email author
  1. 1.Department of Chemistry, Karaj BranchIslamic Azad UniversityKarajIran
  2. 2.Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran
  3. 3.Gas Conversion Department, Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations