Structure and Fundamental Properties of Black Phosphorus

  • Mohd Imran Ahamed
  • Nimra Shakeel
  • Naushad AnwarEmail author
Part of the Engineering Materials book series (ENG.MAT.)


Black phosphorus (BP) is one of the most stable allotropes among the three allotropes of phosphorus at a high temperature under a high pressure possessing new two-dimensional layered structure, which was first prepared by Bridgman in 1914. Since, the development and recent success in growing two-dimensional material family, single- or few-layered, BP has recently a vital field of interest due to their various superior properties, such as a tunable and direct/narrow band gaps, high carrier mobility, large specific surface area, photothermal property, biocompatibility, biodegradability and many interesting in-layer anisotropies and attracted considerable attention on applications in energy conversion and storage, oxygen evolution, electronics, optoelectronics, photocatalytic hydrogenation, water splitting, and thermoelectric generators, etc. Especially, there emerge contributions on electrochemical energy storage devices as supercapacitors and in batteries like lithium/sodium ion batteries. This chapter summarizes the structure and fundamental properties and few preparation methods of BP.


Black phosphorus Structural and hybridization Fundamental properties Preparation 


  1. 1.
    Sun, J., Zheng, G., Lee, H.W., Liu, N., Wang, H., Yao, H.: Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 14, 4573–4580 (2014). Scholar
  2. 2.
    Sun, C., Wen, L., Zeng, J., Wang, Y., Sun, Q., Deng, L., Zhao, C., Li, Z.: One-pot solvent less preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials 91, 81–89 (2016). Scholar
  3. 3.
    Gui, R., Jin, H., Wang, Z., Li, J.: Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications. Chem. Soc. Rev. 47, 6795–6823 (2018). Scholar
  4. 4.
    Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: A review. Crit. Rev. Solid State Mater. Sci. 35, 52–71 (2010). Scholar
  5. 5.
    Khandelwal, A., Mani, K., Karigerasi, M.H., Lahiri, I.: Phosphorene-the two-dimensional black phosphorous: properties, synthesis and applications. Mater. Sci. Eng. B. 221, 17–34 (2017). Scholar
  6. 6.
    Pumera, M.: Phosphorene and black phosphorus for sensing and biosensing. TrAC, Trends Anal. Chem. 93, 1–6 (2017). Scholar
  7. 7.
    Bridgman, P.W.: Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914). Scholar
  8. 8.
    Hultgren, R., Gingrich, N.S., Warren, B.E.: The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 3, 351 (1935). Scholar
  9. 9.
    Li, L.K., Yu, Y.J., Ye, G.J., Ge, Q.Q., Ou, X.D., Wu, H., Feng, D.L., Chen, X.H., Zhang, Y.B.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). Scholar
  10. 10.
    Late, D.J.: Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor. Microporous Mesoporous Mater. 225, 494–503 (2016). Scholar
  11. 11.
    Zhao, W., Xue, Z., Wang, J., Jiang, J., Zhao, X., Mu, T.: Large-Scale, Highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids. ACS Appl. Mater. Interfaces 7, 27608–27612 (2015). Scholar
  12. 12.
    Xu, J.Y., Gao, L.F.C., Hu, X., Zhu, Z.Y., Zhao, M., Wang, Q., Zhang, H.L.: Preparation of large size, few-layer black phosphorus nanosheets via phytic acid-assisted liquid exfoliation. Chem. Commun. 52, 8107–8110 (2016). Scholar
  13. 13.
    Zhang, R., Zhou, X.Y., Zhang, D., Lou, W.K., Zhai, F., Chang, K.: Electronic and magneto-optical properties of monolayer phosphorene quantum dots. 2D Mater. 2, 045012 (2015).
  14. 14.
    Lei, W., Liu, G., Zhang, J., Liu, M.: Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46, 3492–3509 (2017). Scholar
  15. 15.
    Appalakondaiah, S., Vaitheeswaran, G., Lebegue, S., Christensen, N.E., Svane, A.: Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B: Condens. Matter Mater. Phys. 86, 035105 (2012).
  16. 16.
    Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). Scholar
  17. 17.
    Cakir, D., Sahin, H., Peeters, F.M.: Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B. 90, 205421 (2014). Scholar
  18. 18.
    Sun, Z., Martinez, A., Wang, F.: Optical modulators with two-dimensional layered materials. Nat. Photon. 10, 227–238 (2016). Scholar
  19. 19.
    Low, T., Rodin, A.S., Carvalho, A., Jiang, Y., Wang, H., Xia, F., Neto, A.H.C.: Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B. 90, 075434–1–075434–5 (2014).
  20. 20.
    Tran, V., Soklaski, R., Liang, Y., Yang, L.: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B. 89, 817–824 (2014). Scholar
  21. 21.
    Chen, Y., Ren, R., Pu, H., Chang, J., Mao, S., Chen, J.: Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 89, 505–510 (2016). Scholar
  22. 22.
    Li, D., Castillo, A.E.D.R., Jussila, H., Ye, G., Ren, Z., Bai, J., Chen, H.L., Sun, Z., Bonaccorso, F.: Black phosphorus polycarbonate polymer composite for pulsed fibre lasers. Appl. Mater. Today 4, 17–23 (2016). Scholar
  23. 23.
    Tan, W.C., Huang, L., Ng, R.J., Wang, L., Hasan, D.M.N., Duffin, T.J., Kumar, K.S., Nijhuis, C.A., Lee, C., Ang, K.W.: A black phosphorus carbide infrared phototransistor. Adv. Mater. 30, 1705039 (2018). Scholar
  24. 24.
    Bullock, J., Amani, M., Cho, J., Chen, Y.Z., Ahn, G.H., Adinolfi, V., Shrestha, V.R., Gao, Y., Crozier, K.B., Chueh, Y.L., Javey, A.: Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photon. 12, 601–607 (2018). Scholar
  25. 25.
    Miao, J., Song, B., Xu, Z., Cai, L., Zhang, S., Dong, L., Wang, C.: Single pixel black phosphorus photodetector for near-infrared imaging. Small 14, 1702082 (2018). Scholar
  26. 26.
    Huang, Y., Liu, X., Liu, Y., Shao, Y., Zhang, S., Fang, C., Han, G., Zhang, J., Hao, Y.: Nanostructured multiple-layer black phosphorus photodetector based on localized surface plasmon resonance. Optic. Mater. Express 9, 739–750 (2019). Scholar
  27. 27.
    Viti, L., Politano, A., Zhang, K., Vitiello, M.S.: Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes. Nanoscale 11, 1995–2002 (2019). Scholar
  28. 28.
    Dhanabalan, S.C., Ponraj, J.S., Guo, Z., Li, S., Bao, Q., Zhang, H.: Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. 4, 1600305 (2017). Scholar
  29. 29.
    Jiang, J.W., Park, H.S.: Negative poisson’s ratio in single-layer black phosphorus. Nat. Commun. 5, 4727–4734 (2014). Scholar
  30. 30.
    Fu, Y., Wei, Q., Zhang, G., Sun, S.: Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv. Energy Mater. 8, 1702849–1702867 (2018). Scholar
  31. 31.
    Li, L., Chen, L., Mukherjee, S., Gao, J., Sun, H., Liu, Z., Ma, X., Gupta, T., Singh, C.V., Ren, W., Cheng, H.M., Koratkar, N.: Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium–sulfur batteries. Adv. Mater. 29, 1602734–1602742 (2017). Scholar
  32. 32.
    Peng, J., Lai, Y.Q., Chen, Y.Y., Xu, J., Sun, L.P., Weng, J.: Sensitive detection of carcinoembryonic antigen using stability-limited few-layer black phosphorus as an electron donor and a reservoir. Small 13, 1603589 (2017). Scholar
  33. 33.
    Jia, Z.Y., Xiang, J.Y., Mu, C.P., Wen, F.S., Yang, R.L., Hao, C.X., Liu, Z.Y.: J. Mater. Sci. 52, 11506–11512 (2017)CrossRefGoogle Scholar
  34. 34.
    Yang, Y., Gao, J., Zhang, Z., Xiao, S., Xie, H.H., Sun, Z.B., Wang, J.H., Zhou, C.H., Wang, Y.W., Guo, X.Y.: Black phosphorus-based photocathodes in wideband bifacial dye-sensitized solar cells. Adv. Mater. 28, 8937–8944 (2016). Scholar
  35. 35.
    Rahman, M.Z., Kwong, C.W., Davey, K., Qiao, S.Z.: 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ. Sci. 9, 709–728 (2016). Scholar
  36. 36.
    Bai, L., Sun, L., Wang, Y., Liu, Z., Gao, Q., Xiang, H., Xie, H., Zhao, Y.: Solution-processed black phosphorus/PCBM hybrid heterojunctions for solar cells. J. Mater. Chem. A 5, 8280–8286 (2017). Scholar
  37. 37.
    Zhu, M., Cai, X., Fujitsuka, M., Zhang, J., Majima, T.: Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light. Angew. Chem. Int. Ed. 56, 2064–2068 (2017). Scholar
  38. 38.
    He, J., He, D., Wang, Y., Cui, Q., Bellus, M.Z., Chiu, H.Y., Zhao, H.: Exceptional and anisotropic transport properties of photocarriers in black phosphorus. ACS Nano 9, 6436 (2015). Scholar
  39. 39.
    Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C.: Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers. J. Phys. Chem. C 118, 14051 (2014). Scholar
  40. 40.
    Sun, J., Lee, H.W., Pasta, M., Yuan, H., Zheng, G., Sun, Y., Li, Y., Cui, Y.: A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980 (2015). Scholar
  41. 41.
    Martinez, C.C.M., Sofer, Z., Pumera, M.: Layered black phosphorus as a selective vapor sensor. Angew. Chem. Int. Ed. 54, 14317 (2015). Scholar
  42. 42.
    Wang, H., Yang, X., Shao, W., Chen, S., Xie, J., Zhang, X., Wang, J., Xie, Y.: Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 137, 11376 (2015). Scholar
  43. 43.
    Gomez, A.C.: Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6, 4280 (2015). Scholar
  44. 44.
    Liu, H., Du, Y.C., Deng, Y.X., Ye, P.D.: Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015). Scholar
  45. 45.
    Eswaraiah, V., Zeng, Q.S., Long, Y., Liu, Z.: Black phosphorus nanosheets: synthesis, characterization and applications. Small 12, 3480–3502 (2016). Scholar
  46. 46.
    Choi, S.J., Kim, B.K., Lee, T.H., Kim, Y.H., Li, Z., Pop, E., Kim, J.J., Song, J.H., Bae, M.H.: Electrical and thermoelectric transport by variable range hopping in thin black phosphorus devices. Nano Lett. 16, 3969–3975 (2016). Scholar
  47. 47.
    Viti, L., Politano, A., Vitiello, M.S.: Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes. Appl. Mater. 5, 035602 (2017). Scholar
  48. 48.
    Tran, V., Fei, R., Yang, L.: Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus. 2D Mater. 2, 044014 (2015).
  49. 49.
    Cupo, A., Meunier, V.: Quantum confinement in black phosphorus-based nanostructures. J. Phys. Condens. Matter 29, 283001 (2017). Scholar
  50. 50.
    Wei, Q., Peng, X.: Superior mechanical flexibility of phosphorene and few-layer black phosphorus Appl. Phys. Lett. 104, 251915 (2014). Scholar
  51. 51.
    Viti, L., Hu, J., Coquillat, D., Knap, W., Tredicucci, A., Politano, A., Vitiello, M.S.: Black phosphorus terahertz photodetectors. Adv. Mater. 27, 5567–5572 (2015). Scholar
  52. 52.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). Scholar
  53. 53.
    Chen, J.H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M.S.: Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008). Scholar
  54. 54.
    Yong, K.S., Otalvaro, D.M., Duchemin, I., Saeys, M., Joachim, C.: Calculation of the conductance of a finite atomic line of sulfur vacancies created on a molybdenum disulfide surface. Phys. Rev. B: Condens. Matter 77, 998–1002 (2008). Scholar
  55. 55.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nano 6, 147–150 (2011). Scholar
  56. 56.
    Fuhrer, M.S., James, H.: Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 8, 146–147 (2013). Scholar
  57. 57.
    Lee, C.H., Lee, G.H., van Der Zande, A.M., Chen, W., Li, Y., Han, M., Cui, X., Arefe, G., Nuckolls, C., Heinz, T.F., Guo, J., Hone, J., Kim, P.: Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014). Scholar
  58. 58.
    Yu, J.H., Lee, H.R., Hong, S.S., Kong, D.S., Lee, H.W., Wang, H.T., Xiong, F., Wang, S., Cui, Y.: Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers. Nano Lett. 15, 1031–1035 (2015). Scholar
  59. 59.
    Li, M.Y., Shi, Y.M., Cheng, C.C., Lu, L.S., Lin, Y.C., Tang, H.L., Tsai, M.L., Chu, C.W., Wei, K.H., He, J.H., Chang, W.H., Suenaga, K., Li, L.J.: Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015). Scholar
  60. 60.
    Huo, N.J., Kang, J., Wei, Z.M., Li, S.S., Li, J.B., Wei, S.H.: Novel and enhanced optoelectronic performances of multilayer MoS2–WS2 heterostructure transistors. Adv. Funct. Mater. 24, 7025–7031 (2014). Scholar
  61. 61.
    Cheng, R., Li, D., Zhou, H., Wang, C., Yin, A., Jiang, S., Liu, Y., Chen, Y., Huang, Y., Duan, X.: Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 14, 5590–5597 (2014). Scholar
  62. 62.
    Withers, F., Zamudio, O.D.P., Mishchenko, A., Rooney, A.P., Gholinia, A., Watanabe, K., Taniguchi, T., Haigh, S.J., Geim, A.K., Tartakovskii, A.I., Novoselov, K.S.: Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015). Scholar
  63. 63.
    Avsar, A., Vera-Marun, I.J., Tan, J.Y., Watanabe, K., Taniguchi, T., Castro Neto, A.H., Ozyilmaz, B.: Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9, 4138–4145 (2015). Scholar
  64. 64.
    Perello, D.J., Chae, S.H., Song, S., Lee, Y.H.: High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat. Commun. 6, 7809 (2015). Scholar
  65. 65.
    Ceballos, F., Bellus, M.Z., Chiu, H.Y., Zhao, H.: Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. ACS Nano 8, 12717–12724 (2014). Scholar
  66. 66.
    Rivera, P., Schaibley, J.R., Jones, A.M., Ross, J.S., Wu, S., Aivazian, G., Klement, P., Seyler, K., Clark, G., Ghimire, N.J., Yan, J., Mandrus, D.G., Yao, W., Xu, X.: Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 6, 6242 (2015). Scholar
  67. 67.
    Chen, P., Li, N., Chen, X., Ong, W.J., Zhao, X.: The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater. 5, 014002 (2017). Scholar
  68. 68.
    Liu, X., Ryder, C.R., Wells, S.A., Hersam, M.C.: Resolving the in-plane anisotropic properties of black phosphorus. Small Meth. 1, 1700143 (2017). Scholar
  69. 69.
    Jang, H., Wood, J.D., Ryder, C.R., Hersam, M.C., Cahill, D.G.: Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater. 27, 8017–8022 (2015). Scholar
  70. 70.
    Zhang, X., Xie, H., Liu, Z., Tan, C., Luo, Z., Li, H., Lin, J., Sun, L., Chen, W., Xu, Z., Xie, L., Huang, W., Zhang, H.: Black phosphorus quantum dots. Angew. Chem. Int. Ed. Engl. 54, 3653–3657 (2015). Scholar
  71. 71.
    Sun, Z., Xie, H., Tang, S., Yu, X.F., Guo, Z., Shao, J., Zhang, H., Huang, H., Wang, H., Chu, P.K.: Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. Engl. 54, 11526–11530 (2015). Scholar
  72. 72.
    Xie, H., Shao, J., Ma, Y., Wang, J., Huang, H., Yang, N., Wang, H., Ruan, C., Luo, Y., Wang, Q.Q., Chu, P.K., Yu, X.F.: Biodegradable near-infrared-photoresponsive shape memory implants based on black phosphorus nanofillers. Biomaterials 164, 11–21 (2018). Scholar
  73. 73.
    Choi, J.R., Yong, K.W., Choi, J.Y., Nilghaz, A., Lin, Y., Xu, J., Lu, X.: Black phosphorus and its biomedical applications. Theranostics 8, 1005–1026 (2018). Scholar
  74. 74.
    Liang, X., Ye, X., Wang, C., Xing, C., Miao, Q., Xie, Z., Chen, X., Zhang, X., Zhang, H., Mei, L.: Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control Release 296, 150–161 (2019). Scholar
  75. 75.
    Crichton, W.A., Mezouar, M., Monaco, G., Falconi, S.: Phosphorus: new in situ powder data from large-volume apparatus. Powder Diffr. 18, 155–158 (2003). Scholar
  76. 76.
    Du, Y., Ouyang, C., Shi, S., Lei M.: Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 107, 093718, 1–4 (2010). Scholar
  77. 77.
    Takao, Y., Akira, M.: Electronic structure of black phosphorus: tight binding approach. Physica (Amsterdam) 105, 93–98 (1981). Scholar
  78. 78.
    Peng, X., Wei, Q., Copple, A.: Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 90, 085402 (2014). Scholar
  79. 79.
    Qin, G., Yan, Q.B., Qin, Z., Yue, S.Y., Cui, H.J., Zheng, Q.R., Su, G.: Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Sci. Rep. 4, 6946 (2014). Scholar
  80. 80.
    Jiang, J.W., Park, H.S.: J. Phys. D: Mechanical properties of single-layer black phosphorus. Appl. Phys. 47, 385304 (2014).
  81. 81.
    Rodin, A., Carvalho, A., Neto, A.C.: Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014). Scholar
  82. 82.
    Fei, R., Yang, L.: Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14, 2884–2889 (2014). Scholar
  83. 83.
    Wang, Z., Jia, H., Zheng, X., Yang, R., Wang, Z., Ye, G., Chen, X., Shan, J., Feng, P.X.L.: Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies. Nanoscale 7, 877–884 (2015). Scholar
  84. 84.
    Xu, R., Yang, J., Myint, Y.W., Pei, J., Yan, H., Wang, F., Lu, Y.: Exciton brightening in monolayer phosphorene via dimensionality modification. Adv. Mater. 28, 3493–3498 (2016). Scholar
  85. 85.
    Brown, A., Rundqvist, S.: Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 19, 684–685 (1965). Scholar
  86. 86.
    Takao, Y., Morita, A.: Electronic structure of black phosphorus in tight binding approach. J. Phys. Soc. Jpn. 50, 3362–3369 (1981). Scholar
  87. 87.
    Keyes, R.: The electrical properties of black phosphorus. Phys. Rev. 92, 580–584 (1953). Scholar
  88. 88.
    Woomer, A.H., Farnsworth, T.W., Hu, J., Wells, R.A., Donley, C.L., Warren, S.C.: Phosphorene: synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano 9, 8869–8884 (2015). Scholar
  89. 89.
    Tran, V., Soklaski, R., Liang, Y., Yang, L.: Eprint Arxiv arXiv preprintar 1402, 4192 (2014)Google Scholar
  90. 90.
    Qiao, J., Kong, X., Hu, Z.X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). Scholar
  91. 91.
    Chen, Y., Jiang, G., Chen, S., Guo, Z., Yu, X., Zhao, C., Zhang, H., Bao, Q., Wen, S., Tang, D., Fan, D.: Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express 23, 12823–12833 (2015). Scholar
  92. 92.
    Gomez, A.C., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Archarya, K.L., Blanter, S.I., Groenendijk, D.J., Buscema, M., Steele, G.A., Alvarez, J.V., Zandbergen, H.W., Palacios, J.J., van der Zant, H.S.J.: Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014). Scholar
  93. 93.
    Ling, X., Wang, H., Huang, S., Xia, F., Dresselhaus, M.S.: The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 112, 4523–4530 (2015). Scholar
  94. 94.
    Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tomanek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014). Scholar
  95. 95.
    Lv, H.Y., Lu, W.J., Shao, D.F., Sun, Y.P.: Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Phys. Rev. B 90, 085433, 1–8 (2014).
  96. 96.
    Zhu, L., Zhang, G., Li, B.: Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Phys. Rev. B 90, 214302, 1–6 (2014).
  97. 97.
    Zhang, Y.Y., Pei, Q.X., Jiang, J.W., Wei, N., Zhang, Y.W.: Thermal conductivities of single- and multi-layer phosphorene: a molecular dynamics study. Nanoscale 8, 483–491 (2015). Scholar
  98. 98.
    Jain, A., McGaughey, A.J.H.: Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 (2015). Scholar
  99. 99.
    Qin, G., Yan, Q.B., Qin, Z., Yue, S.Y., Hu, M., Su, G.: Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys. 17, 4854–4858 (2015). Scholar
  100. 100.
    Fei, R., Faghaninia, A., Soklaski, R., Yan, J.A., Lo, C., Yang, L.: Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14, 6393–6399 (2014). Scholar
  101. 101.
    Ong, Z.Y., Cai, Y., Zhang, G., Zhang, Y.W.: Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J. Phys. Chem. C 118, 25272–25277 (2014). Scholar
  102. 102.
    Cai, Y., Lan, J., Zhang, G., Zhang, Y.W.: Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 89, 035438 (2014). Scholar
  103. 103.
    Xu, Y., Chen, X., Gu, B.L., Duan, W.: Intrinsic anisotropy of thermal conductance in graphene nanoribbons. Appl. Phys. Lett. 95, 233116 (2009). Scholar
  104. 104.
    Mao, N., Tang, J., Xie, L., Wu, J., Han, B., Lin, J., Deng, S., Ji, W., Xu, H., Liu, K., Tong, L., Zhang, J.: Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 138, 300–305 (2016). Scholar
  105. 105.
    Lan, S., Rodrigues, S., Kang, L., Cai, W.: Visualizing optical phase anisotropy in black phosphorus. ACS Photon. 3, 1176–1181 (2016). Scholar
  106. 106.
    Martinez, C.C.M., Sofer, Z., Sedmidubsky, D., Luxa, J., Kherzia, B., Pumera, M.: Metallic impurities in black phosphorus nanoflakes prepared by different synthetic routes. Nanoscale 10, 1540–1546 (2018). Scholar
  107. 107.
    Krebs, H., Weitz, H., Worms, K.H., Anorg. Z.: About the structure and properties of semi-metals. VIII. The catalytic representation of black phosphorus. Allg. Chem. 280, 119–133 (1955).
  108. 108.
    Maruyama, Y., Suzuki, S., Kobayashi, K., Tanuma, S.: Synthesis and some properties of black phosphorus single crystals. Physica B + C 105, 99–102 (1981). Scholar
  109. 109.
    Narita, S., Terada, S., Mori, S., Muro, K., Akahama, Y., Endo, S.: Far-Infrared cyclotron resonance absorptions in black phosphorus single crystals. J. Phys. Soc. Jpn. 52, 3544–3553 (1983). Scholar
  110. 110.
    Lange, S., Schmidt, P., Nilges, T.: Au3SnP7@black phosphorus: an easy access to black phosphorus. Inorg. Chem. 38, 4028 (2007). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohd Imran Ahamed
    • 1
  • Nimra Shakeel
    • 1
  • Naushad Anwar
    • 1
    Email author
  1. 1.Department of ChemistryAligarh Muslim UniversityAligarhIndia

Personalised recommendations