Skip to main content

Structure and Fundamental Properties of Black Phosphorus

  • Chapter
  • First Online:
Book cover Black Phosphorus

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1233 Accesses

Abstract

Black phosphorus (BP) is one of the most stable allotropes among the three allotropes of phosphorus at a high temperature under a high pressure possessing new two-dimensional layered structure, which was first prepared by Bridgman in 1914. Since, the development and recent success in growing two-dimensional material family, single- or few-layered, BP has recently a vital field of interest due to their various superior properties, such as a tunable and direct/narrow band gaps, high carrier mobility, large specific surface area, photothermal property, biocompatibility, biodegradability and many interesting in-layer anisotropies and attracted considerable attention on applications in energy conversion and storage, oxygen evolution, electronics, optoelectronics, photocatalytic hydrogenation, water splitting, and thermoelectric generators, etc. Especially, there emerge contributions on electrochemical energy storage devices as supercapacitors and in batteries like lithium/sodium ion batteries. This chapter summarizes the structure and fundamental properties and few preparation methods of BP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, J., Zheng, G., Lee, H.W., Liu, N., Wang, H., Yao, H.: Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 14, 4573–4580 (2014). https://doi.org/10.1021/nl501617j

    Article  CAS  Google Scholar 

  2. Sun, C., Wen, L., Zeng, J., Wang, Y., Sun, Q., Deng, L., Zhao, C., Li, Z.: One-pot solvent less preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials 91, 81–89 (2016). https://doi.org/10.1016/j.biomaterials.2016.03.022

    Article  CAS  Google Scholar 

  3. Gui, R., Jin, H., Wang, Z., Li, J.: Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications. Chem. Soc. Rev. 47, 6795–6823 (2018). https://doi.org/10.1039/C8CS00387D

    Article  CAS  Google Scholar 

  4. Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: A review. Crit. Rev. Solid State Mater. Sci. 35, 52–71 (2010). https://doi.org/10.1080/10408430903505036

    Article  CAS  Google Scholar 

  5. Khandelwal, A., Mani, K., Karigerasi, M.H., Lahiri, I.: Phosphorene-the two-dimensional black phosphorous: properties, synthesis and applications. Mater. Sci. Eng. B. 221, 17–34 (2017). https://doi.org/10.1016/j.mseb.2017.03.011

    Article  CAS  Google Scholar 

  6. Pumera, M.: Phosphorene and black phosphorus for sensing and biosensing. TrAC, Trends Anal. Chem. 93, 1–6 (2017). https://doi.org/10.1016/j.trac.2017.05.002

    Article  CAS  Google Scholar 

  7. Bridgman, P.W.: Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914). https://doi.org/10.1021/ja02184a002

    Article  CAS  Google Scholar 

  8. Hultgren, R., Gingrich, N.S., Warren, B.E.: The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 3, 351 (1935). https://doi.org/10.1063/1.1749671

    Article  CAS  Google Scholar 

  9. Li, L.K., Yu, Y.J., Ye, G.J., Ge, Q.Q., Ou, X.D., Wu, H., Feng, D.L., Chen, X.H., Zhang, Y.B.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35

    Article  CAS  Google Scholar 

  10. Late, D.J.: Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor. Microporous Mesoporous Mater. 225, 494–503 (2016). https://doi.org/10.1016/j.micromeso.2016.01.031

    Article  CAS  Google Scholar 

  11. Zhao, W., Xue, Z., Wang, J., Jiang, J., Zhao, X., Mu, T.: Large-Scale, Highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids. ACS Appl. Mater. Interfaces 7, 27608–27612 (2015). https://doi.org/10.1021/acsami.5b10734

    Article  CAS  Google Scholar 

  12. Xu, J.Y., Gao, L.F.C., Hu, X., Zhu, Z.Y., Zhao, M., Wang, Q., Zhang, H.L.: Preparation of large size, few-layer black phosphorus nanosheets via phytic acid-assisted liquid exfoliation. Chem. Commun. 52, 8107–8110 (2016). https://doi.org/10.1039/C6CC03206K

    Article  CAS  Google Scholar 

  13. Zhang, R., Zhou, X.Y., Zhang, D., Lou, W.K., Zhai, F., Chang, K.: Electronic and magneto-optical properties of monolayer phosphorene quantum dots. 2D Mater. 2, 045012 (2015). https://doi.org/10.1088/2053-1583/2/4/045012/meta

  14. Lei, W., Liu, G., Zhang, J., Liu, M.: Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46, 3492–3509 (2017). https://doi.org/10.1039/C7CS00021A

    Article  CAS  Google Scholar 

  15. Appalakondaiah, S., Vaitheeswaran, G., Lebegue, S., Christensen, N.E., Svane, A.: Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B: Condens. Matter Mater. Phys. 86, 035105 (2012). https://doi.org/10.1103/physrevb.86.035105

  16. Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). https://doi.org/10.1038/ncomms5458

    Article  CAS  Google Scholar 

  17. Cakir, D., Sahin, H., Peeters, F.M.: Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B. 90, 205421 (2014). https://doi.org/10.1103/PhysRevB.90.205421

    Article  CAS  Google Scholar 

  18. Sun, Z., Martinez, A., Wang, F.: Optical modulators with two-dimensional layered materials. Nat. Photon. 10, 227–238 (2016). https://doi.org/10.1038/NPHOTON.2016.15

    Article  CAS  Google Scholar 

  19. Low, T., Rodin, A.S., Carvalho, A., Jiang, Y., Wang, H., Xia, F., Neto, A.H.C.: Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B. 90, 075434–1–075434–5 (2014). https://doi.org/10.1103/physrevb.90.075434

  20. Tran, V., Soklaski, R., Liang, Y., Yang, L.: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B. 89, 817–824 (2014). https://doi.org/10.1103/PhysRevB.89.235319

    Article  CAS  Google Scholar 

  21. Chen, Y., Ren, R., Pu, H., Chang, J., Mao, S., Chen, J.: Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 89, 505–510 (2016). https://doi.org/10.1016/j.bios.2016.03.059

    Article  CAS  Google Scholar 

  22. Li, D., Castillo, A.E.D.R., Jussila, H., Ye, G., Ren, Z., Bai, J., Chen, H.L., Sun, Z., Bonaccorso, F.: Black phosphorus polycarbonate polymer composite for pulsed fibre lasers. Appl. Mater. Today 4, 17–23 (2016). https://doi.org/10.1016/j.apmt.2016.05.001

    Article  Google Scholar 

  23. Tan, W.C., Huang, L., Ng, R.J., Wang, L., Hasan, D.M.N., Duffin, T.J., Kumar, K.S., Nijhuis, C.A., Lee, C., Ang, K.W.: A black phosphorus carbide infrared phototransistor. Adv. Mater. 30, 1705039 (2018). https://doi.org/10.1002/adma.201705039

    Article  CAS  Google Scholar 

  24. Bullock, J., Amani, M., Cho, J., Chen, Y.Z., Ahn, G.H., Adinolfi, V., Shrestha, V.R., Gao, Y., Crozier, K.B., Chueh, Y.L., Javey, A.: Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photon. 12, 601–607 (2018). https://doi.org/10.1038/s41566-018-0239-8

    Article  CAS  Google Scholar 

  25. Miao, J., Song, B., Xu, Z., Cai, L., Zhang, S., Dong, L., Wang, C.: Single pixel black phosphorus photodetector for near-infrared imaging. Small 14, 1702082 (2018). https://doi.org/10.1002/smll.201702082

    Article  CAS  Google Scholar 

  26. Huang, Y., Liu, X., Liu, Y., Shao, Y., Zhang, S., Fang, C., Han, G., Zhang, J., Hao, Y.: Nanostructured multiple-layer black phosphorus photodetector based on localized surface plasmon resonance. Optic. Mater. Express 9, 739–750 (2019). https://doi.org/10.1364/OME.9.000739

    Article  CAS  Google Scholar 

  27. Viti, L., Politano, A., Zhang, K., Vitiello, M.S.: Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes. Nanoscale 11, 1995–2002 (2019). https://doi.org/10.1039/c8nr09060b

    Article  CAS  Google Scholar 

  28. Dhanabalan, S.C., Ponraj, J.S., Guo, Z., Li, S., Bao, Q., Zhang, H.: Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. 4, 1600305 (2017). https://doi.org/10.1002/advs.201600305

    Article  CAS  Google Scholar 

  29. Jiang, J.W., Park, H.S.: Negative poisson’s ratio in single-layer black phosphorus. Nat. Commun. 5, 4727–4734 (2014). https://doi.org/10.1038/ncomms5727

    Article  CAS  Google Scholar 

  30. Fu, Y., Wei, Q., Zhang, G., Sun, S.: Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv. Energy Mater. 8, 1702849–1702867 (2018). https://doi.org/10.1002/aenm.201702849

    Article  CAS  Google Scholar 

  31. Li, L., Chen, L., Mukherjee, S., Gao, J., Sun, H., Liu, Z., Ma, X., Gupta, T., Singh, C.V., Ren, W., Cheng, H.M., Koratkar, N.: Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium–sulfur batteries. Adv. Mater. 29, 1602734–1602742 (2017). https://doi.org/10.1002/adma.201602734

    Article  CAS  Google Scholar 

  32. Peng, J., Lai, Y.Q., Chen, Y.Y., Xu, J., Sun, L.P., Weng, J.: Sensitive detection of carcinoembryonic antigen using stability-limited few-layer black phosphorus as an electron donor and a reservoir. Small 13, 1603589 (2017). https://doi.org/10.1002/smll.201603589

    Article  CAS  Google Scholar 

  33. Jia, Z.Y., Xiang, J.Y., Mu, C.P., Wen, F.S., Yang, R.L., Hao, C.X., Liu, Z.Y.: J. Mater. Sci. 52, 11506–11512 (2017)

    Article  CAS  Google Scholar 

  34. Yang, Y., Gao, J., Zhang, Z., Xiao, S., Xie, H.H., Sun, Z.B., Wang, J.H., Zhou, C.H., Wang, Y.W., Guo, X.Y.: Black phosphorus-based photocathodes in wideband bifacial dye-sensitized solar cells. Adv. Mater. 28, 8937–8944 (2016). https://doi.org/10.1002/adma.201602382

    Article  CAS  Google Scholar 

  35. Rahman, M.Z., Kwong, C.W., Davey, K., Qiao, S.Z.: 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ. Sci. 9, 709–728 (2016). https://doi.org/10.1039/C5EE03732H

    Article  CAS  Google Scholar 

  36. Bai, L., Sun, L., Wang, Y., Liu, Z., Gao, Q., Xiang, H., Xie, H., Zhao, Y.: Solution-processed black phosphorus/PCBM hybrid heterojunctions for solar cells. J. Mater. Chem. A 5, 8280–8286 (2017). https://doi.org/10.1039/C6TA08140A

    Article  CAS  Google Scholar 

  37. Zhu, M., Cai, X., Fujitsuka, M., Zhang, J., Majima, T.: Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light. Angew. Chem. Int. Ed. 56, 2064–2068 (2017). https://doi.org/10.1002/anie.201612315

    Article  CAS  Google Scholar 

  38. He, J., He, D., Wang, Y., Cui, Q., Bellus, M.Z., Chiu, H.Y., Zhao, H.: Exceptional and anisotropic transport properties of photocarriers in black phosphorus. ACS Nano 9, 6436 (2015). https://doi.org/10.1021/acsnano.5b02104

    Article  CAS  Google Scholar 

  39. Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C.: Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers. J. Phys. Chem. C 118, 14051 (2014). https://doi.org/10.1021/jp505257g

    Article  CAS  Google Scholar 

  40. Sun, J., Lee, H.W., Pasta, M., Yuan, H., Zheng, G., Sun, Y., Li, Y., Cui, Y.: A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980 (2015). https://doi.org/10.1038/nnano.2015

    Article  CAS  Google Scholar 

  41. Martinez, C.C.M., Sofer, Z., Pumera, M.: Layered black phosphorus as a selective vapor sensor. Angew. Chem. Int. Ed. 54, 14317 (2015). https://doi.org/10.1002/anie.201505015

    Article  CAS  Google Scholar 

  42. Wang, H., Yang, X., Shao, W., Chen, S., Xie, J., Zhang, X., Wang, J., Xie, Y.: Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 137, 11376 (2015). https://doi.org/10.1021/jacs.5b06025

    Article  CAS  Google Scholar 

  43. Gomez, A.C.: Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6, 4280 (2015). https://doi.org/10.1021/acs.jpclett.5b01686

    Article  CAS  Google Scholar 

  44. Liu, H., Du, Y.C., Deng, Y.X., Ye, P.D.: Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015). https://doi.org/10.1039/c4cs00257a

    Article  CAS  Google Scholar 

  45. Eswaraiah, V., Zeng, Q.S., Long, Y., Liu, Z.: Black phosphorus nanosheets: synthesis, characterization and applications. Small 12, 3480–3502 (2016). https://doi.org/10.1002/smll.201600032

    Article  CAS  Google Scholar 

  46. Choi, S.J., Kim, B.K., Lee, T.H., Kim, Y.H., Li, Z., Pop, E., Kim, J.J., Song, J.H., Bae, M.H.: Electrical and thermoelectric transport by variable range hopping in thin black phosphorus devices. Nano Lett. 16, 3969–3975 (2016). https://doi.org/10.1021/acs.nanolett.5b04957

    Article  CAS  Google Scholar 

  47. Viti, L., Politano, A., Vitiello, M.S.: Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes. Appl. Mater. 5, 035602 (2017). https://doi.org/10.1039/c8nr09060b

    Article  CAS  Google Scholar 

  48. Tran, V., Fei, R., Yang, L.: Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus. 2D Mater. 2, 044014 (2015). https://doi.org/10.1088/2053-1583/2/4/044014/pdf

  49. Cupo, A., Meunier, V.: Quantum confinement in black phosphorus-based nanostructures. J. Phys. Condens. Matter 29, 283001 (2017). https://doi.org/10.1088/1361-648x/aa748c

    Google Scholar 

  50. Wei, Q., Peng, X.: Superior mechanical flexibility of phosphorene and few-layer black phosphorus Appl. Phys. Lett. 104, 251915 (2014). https://doi.org/10.1063/1.4885215

    Article  CAS  Google Scholar 

  51. Viti, L., Hu, J., Coquillat, D., Knap, W., Tredicucci, A., Politano, A., Vitiello, M.S.: Black phosphorus terahertz photodetectors. Adv. Mater. 27, 5567–5572 (2015). https://doi.org/10.1002/adma.201502052

    Article  CAS  Google Scholar 

  52. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  53. Chen, J.H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M.S.: Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008). https://doi.org/10.1038/nnano.2008.58

    Article  CAS  Google Scholar 

  54. Yong, K.S., Otalvaro, D.M., Duchemin, I., Saeys, M., Joachim, C.: Calculation of the conductance of a finite atomic line of sulfur vacancies created on a molybdenum disulfide surface. Phys. Rev. B: Condens. Matter 77, 998–1002 (2008). https://doi.org/10.1103/PhysRevB.77.205429

    Article  CAS  Google Scholar 

  55. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nano 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279

    Article  CAS  Google Scholar 

  56. Fuhrer, M.S., James, H.: Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 8, 146–147 (2013). https://doi.org/10.1038/nnano.2013.30

    Article  CAS  Google Scholar 

  57. Lee, C.H., Lee, G.H., van Der Zande, A.M., Chen, W., Li, Y., Han, M., Cui, X., Arefe, G., Nuckolls, C., Heinz, T.F., Guo, J., Hone, J., Kim, P.: Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014). https://doi.org/10.1038/nnano.2014.150

    Article  CAS  Google Scholar 

  58. Yu, J.H., Lee, H.R., Hong, S.S., Kong, D.S., Lee, H.W., Wang, H.T., Xiong, F., Wang, S., Cui, Y.: Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers. Nano Lett. 15, 1031–1035 (2015). https://doi.org/10.1021/nl503897h

    Article  CAS  Google Scholar 

  59. Li, M.Y., Shi, Y.M., Cheng, C.C., Lu, L.S., Lin, Y.C., Tang, H.L., Tsai, M.L., Chu, C.W., Wei, K.H., He, J.H., Chang, W.H., Suenaga, K., Li, L.J.: Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015). https://doi.org/10.1126/science.aab409

    Article  CAS  Google Scholar 

  60. Huo, N.J., Kang, J., Wei, Z.M., Li, S.S., Li, J.B., Wei, S.H.: Novel and enhanced optoelectronic performances of multilayer MoS2–WS2 heterostructure transistors. Adv. Funct. Mater. 24, 7025–7031 (2014). https://doi.org/10.1002/adfm.201401504

    Article  CAS  Google Scholar 

  61. Cheng, R., Li, D., Zhou, H., Wang, C., Yin, A., Jiang, S., Liu, Y., Chen, Y., Huang, Y., Duan, X.: Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 14, 5590–5597 (2014). https://doi.org/10.1021/nl502075n

    Article  CAS  Google Scholar 

  62. Withers, F., Zamudio, O.D.P., Mishchenko, A., Rooney, A.P., Gholinia, A., Watanabe, K., Taniguchi, T., Haigh, S.J., Geim, A.K., Tartakovskii, A.I., Novoselov, K.S.: Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015). https://doi.org/10.1038/nmat4205

    Article  CAS  Google Scholar 

  63. Avsar, A., Vera-Marun, I.J., Tan, J.Y., Watanabe, K., Taniguchi, T., Castro Neto, A.H., Ozyilmaz, B.: Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9, 4138–4145 (2015). https://doi.org/10.1021/acsnano.5b00289

    Article  CAS  Google Scholar 

  64. Perello, D.J., Chae, S.H., Song, S., Lee, Y.H.: High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat. Commun. 6, 7809 (2015). https://doi.org/10.1038/ncomms8809

    Article  CAS  Google Scholar 

  65. Ceballos, F., Bellus, M.Z., Chiu, H.Y., Zhao, H.: Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. ACS Nano 8, 12717–12724 (2014). https://doi.org/10.1021/nn505736z

    Article  CAS  Google Scholar 

  66. Rivera, P., Schaibley, J.R., Jones, A.M., Ross, J.S., Wu, S., Aivazian, G., Klement, P., Seyler, K., Clark, G., Ghimire, N.J., Yan, J., Mandrus, D.G., Yao, W., Xu, X.: Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 6, 6242 (2015). https://doi.org/10.1038/ncomms7242

    Article  CAS  Google Scholar 

  67. Chen, P., Li, N., Chen, X., Ong, W.J., Zhao, X.: The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater. 5, 014002 (2017). https://doi.org/10.1088/2053-1583/aa8d37

    Article  Google Scholar 

  68. Liu, X., Ryder, C.R., Wells, S.A., Hersam, M.C.: Resolving the in-plane anisotropic properties of black phosphorus. Small Meth. 1, 1700143 (2017). https://doi.org/10.1002/smtd.201700143

    Article  CAS  Google Scholar 

  69. Jang, H., Wood, J.D., Ryder, C.R., Hersam, M.C., Cahill, D.G.: Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater. 27, 8017–8022 (2015). https://doi.org/10.1002/adma.201503466

    Article  Google Scholar 

  70. Zhang, X., Xie, H., Liu, Z., Tan, C., Luo, Z., Li, H., Lin, J., Sun, L., Chen, W., Xu, Z., Xie, L., Huang, W., Zhang, H.: Black phosphorus quantum dots. Angew. Chem. Int. Ed. Engl. 54, 3653–3657 (2015). https://doi.org/10.1002/ange.201409400

    Article  CAS  Google Scholar 

  71. Sun, Z., Xie, H., Tang, S., Yu, X.F., Guo, Z., Shao, J., Zhang, H., Huang, H., Wang, H., Chu, P.K.: Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. Engl. 54, 11526–11530 (2015). https://doi.org/10.1002/anie.201506154

    Article  CAS  Google Scholar 

  72. Xie, H., Shao, J., Ma, Y., Wang, J., Huang, H., Yang, N., Wang, H., Ruan, C., Luo, Y., Wang, Q.Q., Chu, P.K., Yu, X.F.: Biodegradable near-infrared-photoresponsive shape memory implants based on black phosphorus nanofillers. Biomaterials 164, 11–21 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.040

    Article  CAS  Google Scholar 

  73. Choi, J.R., Yong, K.W., Choi, J.Y., Nilghaz, A., Lin, Y., Xu, J., Lu, X.: Black phosphorus and its biomedical applications. Theranostics 8, 1005–1026 (2018). https://doi.org/10.7150/thno.22573

    Article  CAS  Google Scholar 

  74. Liang, X., Ye, X., Wang, C., Xing, C., Miao, Q., Xie, Z., Chen, X., Zhang, X., Zhang, H., Mei, L.: Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control Release 296, 150–161 (2019). https://doi.org/10.1016/j.jconrel.2019.01.027

    Article  CAS  Google Scholar 

  75. Crichton, W.A., Mezouar, M., Monaco, G., Falconi, S.: Phosphorus: new in situ powder data from large-volume apparatus. Powder Diffr. 18, 155–158 (2003). https://doi.org/10.1154/1.1545115

    Article  CAS  Google Scholar 

  76. Du, Y., Ouyang, C., Shi, S., Lei M.: Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 107, 093718, 1–4 (2010). https://doi.org/10.1063/1.3386509

    Article  Google Scholar 

  77. Takao, Y., Akira, M.: Electronic structure of black phosphorus: tight binding approach. Physica (Amsterdam) 105, 93–98 (1981). https://doi.org/10.1016/0378-4363(81)90222-9

    Article  CAS  Google Scholar 

  78. Peng, X., Wei, Q., Copple, A.: Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 90, 085402 (2014). https://doi.org/10.1103/PhysRevB.90.085402

    Article  CAS  Google Scholar 

  79. Qin, G., Yan, Q.B., Qin, Z., Yue, S.Y., Cui, H.J., Zheng, Q.R., Su, G.: Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Sci. Rep. 4, 6946 (2014). https://doi.org/10.1038/srep06946

    Article  CAS  Google Scholar 

  80. Jiang, J.W., Park, H.S.: J. Phys. D: Mechanical properties of single-layer black phosphorus. Appl. Phys. 47, 385304 (2014). https://doi.org/10.1088/0022-3727/47/38/385304/meta

  81. Rodin, A., Carvalho, A., Neto, A.C.: Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014). https://doi.org/10.1103/PhysRevLett.112.176801

    Article  CAS  Google Scholar 

  82. Fei, R., Yang, L.: Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14, 2884–2889 (2014). https://doi.org/10.1021/nl500935z

    Article  CAS  Google Scholar 

  83. Wang, Z., Jia, H., Zheng, X., Yang, R., Wang, Z., Ye, G., Chen, X., Shan, J., Feng, P.X.L.: Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies. Nanoscale 7, 877–884 (2015). https://doi.org/10.1039/C4NR04829F

    Article  CAS  Google Scholar 

  84. Xu, R., Yang, J., Myint, Y.W., Pei, J., Yan, H., Wang, F., Lu, Y.: Exciton brightening in monolayer phosphorene via dimensionality modification. Adv. Mater. 28, 3493–3498 (2016). https://doi.org/10.1002/adma.201505998

    Article  CAS  Google Scholar 

  85. Brown, A., Rundqvist, S.: Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 19, 684–685 (1965). https://doi.org/10.1107/S0365110X65004140

    Article  CAS  Google Scholar 

  86. Takao, Y., Morita, A.: Electronic structure of black phosphorus in tight binding approach. J. Phys. Soc. Jpn. 50, 3362–3369 (1981). https://doi.org/10.1143/JPSJ.50.3362

    Article  CAS  Google Scholar 

  87. Keyes, R.: The electrical properties of black phosphorus. Phys. Rev. 92, 580–584 (1953). https://doi.org/10.1103/PhysRev.92.580

    Article  CAS  Google Scholar 

  88. Woomer, A.H., Farnsworth, T.W., Hu, J., Wells, R.A., Donley, C.L., Warren, S.C.: Phosphorene: synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano 9, 8869–8884 (2015). https://doi.org/10.1021/acsnano.5b02599

    Article  CAS  Google Scholar 

  89. Tran, V., Soklaski, R., Liang, Y., Yang, L.: Eprint Arxiv arXiv preprintar 1402, 4192 (2014)

    Google Scholar 

  90. Qiao, J., Kong, X., Hu, Z.X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). https://doi.org/10.1038/ncomms5475

    Article  CAS  Google Scholar 

  91. Chen, Y., Jiang, G., Chen, S., Guo, Z., Yu, X., Zhao, C., Zhang, H., Bao, Q., Wen, S., Tang, D., Fan, D.: Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express 23, 12823–12833 (2015). https://doi.org/10.1364/OE.23.012823

    Article  CAS  Google Scholar 

  92. Gomez, A.C., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Archarya, K.L., Blanter, S.I., Groenendijk, D.J., Buscema, M., Steele, G.A., Alvarez, J.V., Zandbergen, H.W., Palacios, J.J., van der Zant, H.S.J.: Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014). https://doi.org/10.1088/2053-1583/1/2/025001

    Article  Google Scholar 

  93. Ling, X., Wang, H., Huang, S., Xia, F., Dresselhaus, M.S.: The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 112, 4523–4530 (2015). https://doi.org/10.1073/pnas.1416581112

    Article  CAS  Google Scholar 

  94. Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tomanek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014). https://doi.org/10.1021/nn501226z

    Article  CAS  Google Scholar 

  95. Lv, H.Y., Lu, W.J., Shao, D.F., Sun, Y.P.: Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Phys. Rev. B 90, 085433, 1–8 (2014). https://doi.org/10.1103/physrevb.90.085433

  96. Zhu, L., Zhang, G., Li, B.: Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Phys. Rev. B 90, 214302, 1–6 (2014). https://doi.org/10.1103/physrevb.90.214302

  97. Zhang, Y.Y., Pei, Q.X., Jiang, J.W., Wei, N., Zhang, Y.W.: Thermal conductivities of single- and multi-layer phosphorene: a molecular dynamics study. Nanoscale 8, 483–491 (2015). https://doi.org/10.1039/C5NR05451F

    Article  CAS  Google Scholar 

  98. Jain, A., McGaughey, A.J.H.: Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 (2015). https://doi.org/10.1038/srep08501

    Article  CAS  Google Scholar 

  99. Qin, G., Yan, Q.B., Qin, Z., Yue, S.Y., Hu, M., Su, G.: Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys. 17, 4854–4858 (2015). https://doi.org/10.1039/C4CP04858J

    Article  CAS  Google Scholar 

  100. Fei, R., Faghaninia, A., Soklaski, R., Yan, J.A., Lo, C., Yang, L.: Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14, 6393–6399 (2014). https://doi.org/10.1021/nl502865s

    Article  CAS  Google Scholar 

  101. Ong, Z.Y., Cai, Y., Zhang, G., Zhang, Y.W.: Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J. Phys. Chem. C 118, 25272–25277 (2014). https://doi.org/10.1021/jp5079357

    Article  CAS  Google Scholar 

  102. Cai, Y., Lan, J., Zhang, G., Zhang, Y.W.: Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 89, 035438 (2014). https://doi.org/10.1103/PhysRevB.89.035438

    Article  CAS  Google Scholar 

  103. Xu, Y., Chen, X., Gu, B.L., Duan, W.: Intrinsic anisotropy of thermal conductance in graphene nanoribbons. Appl. Phys. Lett. 95, 233116 (2009). https://doi.org/10.1063/1.3272678

    Article  CAS  Google Scholar 

  104. Mao, N., Tang, J., Xie, L., Wu, J., Han, B., Lin, J., Deng, S., Ji, W., Xu, H., Liu, K., Tong, L., Zhang, J.: Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 138, 300–305 (2016). https://doi.org/10.1021/jacs.5b10685

    Article  CAS  Google Scholar 

  105. Lan, S., Rodrigues, S., Kang, L., Cai, W.: Visualizing optical phase anisotropy in black phosphorus. ACS Photon. 3, 1176–1181 (2016). https://doi.org/10.1021/acsphotonics.6b00320

    Article  CAS  Google Scholar 

  106. Martinez, C.C.M., Sofer, Z., Sedmidubsky, D., Luxa, J., Kherzia, B., Pumera, M.: Metallic impurities in black phosphorus nanoflakes prepared by different synthetic routes. Nanoscale 10, 1540–1546 (2018). https://doi.org/10.1039/c7nr05718k

    Article  CAS  Google Scholar 

  107. Krebs, H., Weitz, H., Worms, K.H., Anorg. Z.: About the structure and properties of semi-metals. VIII. The catalytic representation of black phosphorus. Allg. Chem. 280, 119–133 (1955). https://doi.org/10.1002/zaac.19552800110

  108. Maruyama, Y., Suzuki, S., Kobayashi, K., Tanuma, S.: Synthesis and some properties of black phosphorus single crystals. Physica B + C 105, 99–102 (1981). https://doi.org/10.1016/0378-4363(81)90223-0

    Article  CAS  Google Scholar 

  109. Narita, S., Terada, S., Mori, S., Muro, K., Akahama, Y., Endo, S.: Far-Infrared cyclotron resonance absorptions in black phosphorus single crystals. J. Phys. Soc. Jpn. 52, 3544–3553 (1983). https://doi.org/10.1143/jpsj.52.3544

    Article  CAS  Google Scholar 

  110. Lange, S., Schmidt, P., Nilges, T.: Au3SnP7@black phosphorus: an easy access to black phosphorus. Inorg. Chem. 38, 4028 (2007). https://doi.org/10.1021/ic062192q

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naushad Anwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahamed, M.I., Shakeel, N., Anwar, N. (2020). Structure and Fundamental Properties of Black Phosphorus. In: Inamuddin, Boddula, R., Asiri, A. (eds) Black Phosphorus. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29555-4_7

Download citation

Publish with us

Policies and ethics