Advertisement

Biomedical Applications of Black Phosphorus

  • Sashivinay Kumar Gaddam
  • Ramyakrishna Pothu
  • Aditya Saran
  • Rajender BoddulaEmail author
Chapter
  • 490 Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Two dimensional (2D) materials have attracted extravagant eminence in the area of biomedical applications due to their distinctive structure, biocompatibility, and physicochemical properties. Mono-layered black phosphorus (BP), also known as phosphorene, is a thermodynamically stable allotrope of phosphorous and is the very recent member of the 2D family has lured tremendous scientific interest since its rediscovery in 2014. The exceptional properties of BP including high carrier mobility, large specific surface area, tunable band gap, intrinsic anisotropy, and inherent in vivo biocompatibility and biodegradability make it an ideal alternative to other 2D materials in biomedical applications. This chapter summarizes various biomedical applications of BP including drug delivery, bio-imaging, bio-sensing, photothermal/photodynamic therapy, and theranostics. The main focus of this chapter is to emphasize the efficacy of BP nanosheets (NSs) and quantum dots (QDs) as robust and tunable diagnostic and therapeutic platforms. Finally, the current challenges and future perspectives in biomedical applications of BP have also been addressed.

Keywords

Black phosphorous Biomedical Theranostics Drug delivery Bio-sensing Imaging 

References

  1. 1.
    de Menezes, B.R.C., Rodrigues, K.F., da Silva Fonseca, B.C., et al.: Recent advances in the use of carbon nanotubes as smart biomaterials. J. Mater. Chem. B 7, 1343–1360 (2019).  https://doi.org/10.1039/C8TB02419GCrossRefGoogle Scholar
  2. 2.
    Patz, J.A., Graczyk, T.K., Geller, N., Vittor, A.Y.: Effects of environmental change on emerging parasitic diseases. Int. J. Parasitol. 30, 1395–1405 (2000).  https://doi.org/10.1016/S0020-7519(00)00141-7CrossRefGoogle Scholar
  3. 3.
    Kumar, S., Rani, R., Dilbaghi, N., et al.: Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem. Soc. Rev. 46, 158–196 (2017).  https://doi.org/10.1039/C6CS00517ACrossRefGoogle Scholar
  4. 4.
    Partha, R., Conyers, J.L.: Biomedical applications of functionalized fullerene-based nanomaterials. Int. J. Nanomed. 4, 261–275 (2009)CrossRefGoogle Scholar
  5. 5.
    Gao, J., Wang, H.L., Shreve, A., Iyer, R.: Fullerene derivatives induce premature senescence: a new toxicity paradigm or novel biomedical applications. Toxicol. Appl. Pharmacol. 244, 130–143 (2010).  https://doi.org/10.1016/J.TAAP.2009.12.025CrossRefGoogle Scholar
  6. 6.
    Erol, O., Uyan, I., Hatip, M., et al.: Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications. Nanomed. Nanotechnol. Biol. Med. 14, 2433–2454 (2018).  https://doi.org/10.1016/J.NANO.2017.03.021CrossRefGoogle Scholar
  7. 7.
    Bianco, A., Kostarelos, K., Partidos, C.D., Prato, M.: Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 0, 571 (2005).  https://doi.org/10.1039/b410943k
  8. 8.
    Klingeler, R., Sim, R.B.: Carbon Nanotubes for Biomedical Applications. Springer, Berlin, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Shen, H., Zhang, L., Liu, M., Zhang, Z.: Biomedical applications of graphene. Theranostics 2, 283–294 (2012).  https://doi.org/10.7150/thno.3642CrossRefGoogle Scholar
  10. 10.
    Yang, Y., Asiri, A.M., Tang, Z., et al.: Graphene based materials for biomedical applications. Mater. Today 16, 365–373 (2013).  https://doi.org/10.1016/J.MATTOD.2013.09.004CrossRefGoogle Scholar
  11. 11.
    Zhang, Y., Nayak, T.R., Hong, H., Cai, W.: Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4, 3833 (2012).  https://doi.org/10.1039/c2nr31040fCrossRefGoogle Scholar
  12. 12.
    Chimene, D., Alge, D.L., Gaharwar, A.K.: Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv. Mater. 27, 7261–7284 (2015).  https://doi.org/10.1002/adma.201502422CrossRefGoogle Scholar
  13. 13.
    Luo, M., Fan, T., Zhou, Y., et al.: 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 29, 1808306 (2019).  https://doi.org/10.1002/adfm.201808306CrossRefGoogle Scholar
  14. 14.
    Li, L., Yu, Y., Ye, G.J., et al.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).  https://doi.org/10.1038/nnano.2014.35CrossRefGoogle Scholar
  15. 15.
    Liu, H., Neal, A.T., Zhu, Z., et al.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).  https://doi.org/10.1021/nn501226zCrossRefGoogle Scholar
  16. 16.
    Castellanos-Gomez, A., Vicarelli, L., Prada, E., et al.: Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).  https://doi.org/10.1088/2053-1583/1/2/025001CrossRefGoogle Scholar
  17. 17.
    Wang, X., Jones, A.M., Seyler, K.L., et al.: Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015).  https://doi.org/10.1038/nnano.2015.71CrossRefGoogle Scholar
  18. 18.
    Wang, Y.W., Liu, S., Zeng, B.W., et al.: Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots. Nanoscale 9, 4683–4690 (2017).  https://doi.org/10.1039/C6NR09235GCrossRefGoogle Scholar
  19. 19.
    Wu, J., Koon, G.K.W., Xiang, D., et al.: Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano 9, 8070–8077 (2015).  https://doi.org/10.1021/acsnano.5b01922CrossRefGoogle Scholar
  20. 20.
    Zhu, M., Osakada, Y., Kim, S., et al.: Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Appl. Catal. B Environ. 217, 285–292 (2017).  https://doi.org/10.1016/J.APCATB.2017.06.002CrossRefGoogle Scholar
  21. 21.
    Qiu, M., Wang, D., Liang, W., et al.: Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. 115, 501–506 (2018).  https://doi.org/10.1073/PNAS.1714421115CrossRefGoogle Scholar
  22. 22.
    Shao, J., Xie, H., Huang, H., et al.: Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016).  https://doi.org/10.1038/ncomms12967CrossRefGoogle Scholar
  23. 23.
    Fojtů, M., Chia, X., Sofer, Z., et al.: Black phosphorus nanoparticles potentiate the anticancer effect of oxaliplatin in ovarian cancer cell line. Adv. Funct. Mater. 27, 1701955 (2017).  https://doi.org/10.1002/adfm.201701955CrossRefGoogle Scholar
  24. 24.
    Lee, H.U., Park, S.Y., Lee, S.C., et al.: Black phosphorus (BP) nanodots for potential biomedical applications. Small 12, 214–219 (2016).  https://doi.org/10.1002/smll.201502756CrossRefGoogle Scholar
  25. 25.
    Wei, Q., Peng, X.: Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014).  https://doi.org/10.1063/1.4885215CrossRefGoogle Scholar
  26. 26.
    Jiang, J.-W., Park, H.S.: Mechanical properties of single-layer black phosphorus. J. Phys. D Appl. Phys. 47, 385304 (2014).  https://doi.org/10.1088/0022-3727/47/38/385304CrossRefGoogle Scholar
  27. 27.
    Li, X., Deng, B., Wang, X., et al.: Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2, 031002 (2015).  https://doi.org/10.1088/2053-1583/2/3/031002CrossRefGoogle Scholar
  28. 28.
    Chen, Y., Ren, R., Pu, H., et al.: Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 89, 505–510 (2017).  https://doi.org/10.1016/J.BIOS.2016.03.059CrossRefGoogle Scholar
  29. 29.
    Zhang, X., Zhang, Z., Zhang, S., et al.: Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms. Small 13, 1701210 (2017).  https://doi.org/10.1002/smll.201701210CrossRefGoogle Scholar
  30. 30.
    Latiff, N.M., Teo, W.Z., Sofer, Z., et al.: The cytotoxicity of layered black phosphorus. Chem. A Eur. J. 21, 13991–13995 (2015).  https://doi.org/10.1002/chem.201502006CrossRefGoogle Scholar
  31. 31.
    Lin, J., Wang, S., Huang, P., et al.: Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7, 5320–5329 (2013).  https://doi.org/10.1021/nn4011686CrossRefGoogle Scholar
  32. 32.
    Thangavel, S., Yoshitomi, T., Sakharkar, M.K., Nagasaki, Y.: Redox nanoparticle increases the chemotherapeutic efficiency of pioglitazone and suppresses its toxic side effects. Biomaterials 99, 109–123 (2016).  https://doi.org/10.1016/J.BIOMATERIALS.2016.05.001CrossRefGoogle Scholar
  33. 33.
    Sun, Z., Xie, H., Tang, S., et al.: Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chemie. Int. Ed. 54, 11526–11530 (2015).  https://doi.org/10.1002/anie.201506154CrossRefGoogle Scholar
  34. 34.
    Sun, C., Wen, L., Zeng, J., et al.: One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials 91, 81–89 (2016).  https://doi.org/10.1016/J.BIOMATERIALS.2016.03.022CrossRefGoogle Scholar
  35. 35.
    Zhao, Y., Tong, L., Li, Z., et al.: Stable and multifunctional dye-modified black phosphorus nanosheets for near-infrared imaging-guided photothermal therapy. Chem. Mater. 29, 7131–7139 (2017).  https://doi.org/10.1021/acs.chemmater.7b01106CrossRefGoogle Scholar
  36. 36.
    Xing, C., Chen, S., Qiu, M., et al.: Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy. Adv. Healthc. Mater. 7, 1701510 (2018).  https://doi.org/10.1002/adhm.201701510CrossRefGoogle Scholar
  37. 37.
    Shao, J., Ruan, C., Xie, H., et al.: Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer. Adv. Sci. 5, 1700848 (2018).  https://doi.org/10.1002/advs.201700848CrossRefGoogle Scholar
  38. 38.
    Wang, H., Yang, X., Shao, W., et al.: Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 137, 11376–11382 (2015).  https://doi.org/10.1021/jacs.5b06025CrossRefGoogle Scholar
  39. 39.
    Guo, T., Wu, Y., Lin, Y., et al.: Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy. Small 14, 1702815 (2018).  https://doi.org/10.1002/smll.201702815CrossRefGoogle Scholar
  40. 40.
    Song, G., Chen, M., Zhang, Y., et al.: Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano Lett. 18, 182–189 (2018).  https://doi.org/10.1021/acs.nanolett.7b03829CrossRefGoogle Scholar
  41. 41.
    Ju, Y., Zhang, H., Yu, J., et al.: Monodisperse Au–Fe2C Janus nanoparticles: an attractive multifunctional material for triple-modal imaging-guided tumor photothermal therapy. ACS Nano 11, 9239–9248 (2017).  https://doi.org/10.1021/acsnano.7b04461CrossRefGoogle Scholar
  42. 42.
    Song, J., Wu, B., Zhou, Z., et al.: Double-layered plasmonic-magnetic vesicles by self-assembly of Janus amphiphilic gold-iron(II, III) oxide nanoparticles. Angew. Chemie. Int. Ed. 56, 8110–8114 (2017).  https://doi.org/10.1002/anie.201702572CrossRefGoogle Scholar
  43. 43.
    Zhang, D., Lin, Z., Lan, S., et al.: The design of Janus black phosphorus quantum dots@metal–organic nanoparticles for simultaneously enhancing environmental stability and photodynamic therapy efficiency. Mater. Chem. Front. 3, 656–663 (2019).  https://doi.org/10.1039/C8QM00623GCrossRefGoogle Scholar
  44. 44.
    Dong, Z., Gong, H., Gao, M., et al.: polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics 6, 1031–1042 (2016).  https://doi.org/10.7150/thno.14431CrossRefGoogle Scholar
  45. 45.
    Sun, X., Wang, C., Gao, M., et al.: Remotely controlled red blood cell carriers for cancer targeting and near-infrared light-triggered drug release in combined photothermal-chemotherapy. Adv. Funct. Mater. 25, 2386–2394 (2015).  https://doi.org/10.1002/adfm.201500061CrossRefGoogle Scholar
  46. 46.
    Ogretmen, B., Safa, A.R.: Expression of the mutated p53 tumor suppressor protein and its molecular and biochemical characterization in multidrug resistant MCF-7/Adr human breast cancer cells. Oncogene 14, 499–506 (1997).  https://doi.org/10.1038/sj.onc.1200855CrossRefGoogle Scholar
  47. 47.
    Wu, F., Zhang, M., Chu, X., et al.: Black phosphorus nanosheets-based nanocarriers for enhancing chemotherapy drug sensitiveness via depleting mutant p53 and resistant cancer multimodal therapy. Chem. Eng. J. 370, 387–399 (2019).  https://doi.org/10.1016/J.CEJ.2019.03.228CrossRefGoogle Scholar
  48. 48.
    Zong, S., Wang, L., Yang, Z., et al.: Black phosphorus-based drug nanocarrier for targeted and synergetic chemophotothermal therapy of acute lymphoblastic leukemia. ACS Appl. Mater. Interfaces 11, 5896–5902 (2019).  https://doi.org/10.1021/acsami.8b22563CrossRefGoogle Scholar
  49. 49.
    Yin, F., Hu, K., Chen, S., et al.: Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. J. Mater. Chem. B 5, 5433–5440 (2017).  https://doi.org/10.1039/C7TB01068KCrossRefGoogle Scholar
  50. 50.
    Baumann, B., Jungst, T., Stichler, S., et al.: Control of nanoparticle release kinetics from 3D printed hydrogel scaffolds. Angew. Chemie. Int. Ed. 56, 4623–4628 (2017).  https://doi.org/10.1002/anie.201700153CrossRefGoogle Scholar
  51. 51.
    Khademhosseini, A., Langer, R.: A decade of progress in tissue engineering. Nat. Protoc. 11, 1775–1781 (2016).  https://doi.org/10.1038/nprot.2016.123CrossRefGoogle Scholar
  52. 52.
    Zhang, Y., Zhai, D., Xu, M., et al.: 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication 9, 025037 (2017).  https://doi.org/10.1088/1758-5090/aa6ed6CrossRefGoogle Scholar
  53. 53.
    Shi, W., Sun, M., Hu, X., et al.: Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Adv. Mater. 29, 1701089 (2017).  https://doi.org/10.1002/adma.201701089CrossRefGoogle Scholar
  54. 54.
    Yang, B., Yin, J., Chen, Y., et al.: 2D-black-phosphorus-reinforced 3D-printed scaffolds: a stepwise countermeasure for osteosarcoma. Adv. Mater. 30, 1705611 (2018).  https://doi.org/10.1002/adma.201705611CrossRefGoogle Scholar
  55. 55.
    Xu, M., Wang, L.V.: Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006).  https://doi.org/10.1063/1.2195024CrossRefGoogle Scholar
  56. 56.
    Li, C., Wang, L.V.: Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol. 54, R59–R97 (2009).  https://doi.org/10.1088/0031-9155/54/19/R01CrossRefGoogle Scholar
  57. 57.
    Wang, L.V.: Multiscale photoacoustic microscopy and computed tomography. Nat. Photon. 3, 503–509 (2009).  https://doi.org/10.1038/nphoton.2009.157CrossRefGoogle Scholar
  58. 58.
    Sun, Z., Zhao, Y., Li, Z., et al.: TiL4—coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small 13, 1602896 (2017).  https://doi.org/10.1002/smll.201602896CrossRefGoogle Scholar
  59. 59.
    Carr, J.A., Franke, D., Caram, J.R., et al.: Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl. Acad. Sci. 115, 4465–4470 (2018).  https://doi.org/10.1073/PNAS.1718917115CrossRefGoogle Scholar
  60. 60.
    Zhang, M., Wang, W., Cui, Y., et al.: Near-infrared light-mediated photodynamic/photothermal therapy nanoplatform by the assembly of Fe3O4 carbon dots with graphitic black phosphorus quantum dots. Int. J. Nanomed. 13, 2803–2819 (2018).  https://doi.org/10.2147/IJN.S156434CrossRefGoogle Scholar
  61. 61.
    Liu, T., Wang, C., Cui, W., et al.: Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets. Nanoscale 6, 11219–11225 (2014).  https://doi.org/10.1039/C4NR03753GCrossRefGoogle Scholar
  62. 62.
    Yang, X., Wang, D., Shi, Y., et al.: Black phosphorus nanosheets immobilizing Ce6 for imaging-guided photothermal/photodynamic cancer therapy. ACS Appl. Mater. Interfaces 10, 12431–12440 (2018).  https://doi.org/10.1021/acsami.8b00276CrossRefGoogle Scholar
  63. 63.
    Lane, L.A., Qian, X., Nie, S.: SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem. Rev. 115, 10489–10529 (2015).  https://doi.org/10.1021/acs.chemrev.5b00265CrossRefGoogle Scholar
  64. 64.
    Liu, Z., Chen, H., Jia, Y., et al.: A two-dimensional fingerprint nanoprobe based on black phosphorus for bio-SERS analysis and chemo-photothermal therapy. Nanoscale 10, 18795–18804 (2018).  https://doi.org/10.1039/C8NR05300FCrossRefGoogle Scholar
  65. 65.
    Zhao, Y., Zhang, Y.-H., Zhuge, Z., et al.: Synthesis of a poly-l-lysine/black phosphorus hybrid for biosensors. Anal. Chem. 90, 3149–3155 (2018).  https://doi.org/10.1021/acs.analchem.7b04395CrossRefGoogle Scholar
  66. 66.
    Kumar, V., Brent, J.R., Shorie, M., et al.: Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces 8, 22860–22868 (2016).  https://doi.org/10.1021/acsami.6b06488CrossRefGoogle Scholar
  67. 67.
    Yew, Y.T., Sofer, Z., Mayorga-Martinez, C.C., Pumera, M.: Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection. Mater. Chem. Front. 1, 1130–1136 (2017).  https://doi.org/10.1039/C6QM00341ACrossRefGoogle Scholar
  68. 68.
    Qiu, M., Singh, A., Wang, D., et al.: Biocompatible and biodegradable inorganic nanostructures for nanomedicine: silicon and black phosphorus. Nano Today 25, 135–155 (2019).  https://doi.org/10.1016/J.NANTOD.2019.02.012CrossRefGoogle Scholar
  69. 69.
    Li, Z., Xu, H., Shao, J., et al.: Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. Appl. Mater. Today 15, 297–304 (2019).  https://doi.org/10.1016/J.APMT.2019.02.002CrossRefGoogle Scholar
  70. 70.
    Li, Y., Tang, J., Pan, D.-X., et al.: A versatile imaging and therapeutic platform based on dual-band luminescent lanthanide nanoparticles toward tumor metastasis inhibition. ACS Nano 10, 2766–2773 (2016).  https://doi.org/10.1021/acsnano.5b07873CrossRefGoogle Scholar
  71. 71.
    Chen, G., Ågren, H., Ohulchanskyy, T.Y., Prasad, P.N.: Light upconverting core–shell nanostructures: nanophotonic control for emerging applications. Chem. Soc. Rev. 44, 1680–1713 (2015).  https://doi.org/10.1039/C4CS00170BCrossRefGoogle Scholar
  72. 72.
    Zheng, W., Huang, P., Tu, D., et al.: Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 44, 1379–1415 (2015).  https://doi.org/10.1039/C4CS00178HCrossRefGoogle Scholar
  73. 73.
    Lv, R., Yang, D., Yang, P., et al.: Integration of upconversion nanoparticles and ultrathin black phosphorus for efficient photodynamic theranostics under 808 nm near-infrared light irradiation. Chem. Mater. 28, 4724–4734 (2016).  https://doi.org/10.1021/acs.chemmater.6b01720CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sashivinay Kumar Gaddam
    • 1
  • Ramyakrishna Pothu
    • 2
  • Aditya Saran
    • 3
  • Rajender Boddula
    • 4
    Email author
  1. 1.LAMTUF Plastics Private LtdHyderabadIndia
  2. 2.College of Chemistry and Chemical EngineeringHunan UniversityChangshaPeople’s Republic of China
  3. 3.Department of MicrobiologyMarwadi UniversityRajkotIndia
  4. 4.CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijingPeople’s Republic of China

Personalised recommendations