Biomedical Applications of Black Phosphorus

  • Sashivinay Kumar Gaddam
  • Ramyakrishna Pothu
  • Aditya Saran
  • Rajender BoddulaEmail author
Part of the Engineering Materials book series (ENG.MAT.)


Two dimensional (2D) materials have attracted extravagant eminence in the area of biomedical applications due to their distinctive structure, biocompatibility, and physicochemical properties. Mono-layered black phosphorus (BP), also known as phosphorene, is a thermodynamically stable allotrope of phosphorous and is the very recent member of the 2D family has lured tremendous scientific interest since its rediscovery in 2014. The exceptional properties of BP including high carrier mobility, large specific surface area, tunable band gap, intrinsic anisotropy, and inherent in vivo biocompatibility and biodegradability make it an ideal alternative to other 2D materials in biomedical applications. This chapter summarizes various biomedical applications of BP including drug delivery, bio-imaging, bio-sensing, photothermal/photodynamic therapy, and theranostics. The main focus of this chapter is to emphasize the efficacy of BP nanosheets (NSs) and quantum dots (QDs) as robust and tunable diagnostic and therapeutic platforms. Finally, the current challenges and future perspectives in biomedical applications of BP have also been addressed.


Black phosphorous Biomedical Theranostics Drug delivery Bio-sensing Imaging 


  1. 1.
    de Menezes, B.R.C., Rodrigues, K.F., da Silva Fonseca, B.C., et al.: Recent advances in the use of carbon nanotubes as smart biomaterials. J. Mater. Chem. B 7, 1343–1360 (2019). Scholar
  2. 2.
    Patz, J.A., Graczyk, T.K., Geller, N., Vittor, A.Y.: Effects of environmental change on emerging parasitic diseases. Int. J. Parasitol. 30, 1395–1405 (2000). Scholar
  3. 3.
    Kumar, S., Rani, R., Dilbaghi, N., et al.: Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem. Soc. Rev. 46, 158–196 (2017). Scholar
  4. 4.
    Partha, R., Conyers, J.L.: Biomedical applications of functionalized fullerene-based nanomaterials. Int. J. Nanomed. 4, 261–275 (2009)CrossRefGoogle Scholar
  5. 5.
    Gao, J., Wang, H.L., Shreve, A., Iyer, R.: Fullerene derivatives induce premature senescence: a new toxicity paradigm or novel biomedical applications. Toxicol. Appl. Pharmacol. 244, 130–143 (2010). Scholar
  6. 6.
    Erol, O., Uyan, I., Hatip, M., et al.: Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications. Nanomed. Nanotechnol. Biol. Med. 14, 2433–2454 (2018). Scholar
  7. 7.
    Bianco, A., Kostarelos, K., Partidos, C.D., Prato, M.: Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 0, 571 (2005).
  8. 8.
    Klingeler, R., Sim, R.B.: Carbon Nanotubes for Biomedical Applications. Springer, Berlin, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Shen, H., Zhang, L., Liu, M., Zhang, Z.: Biomedical applications of graphene. Theranostics 2, 283–294 (2012). Scholar
  10. 10.
    Yang, Y., Asiri, A.M., Tang, Z., et al.: Graphene based materials for biomedical applications. Mater. Today 16, 365–373 (2013). Scholar
  11. 11.
    Zhang, Y., Nayak, T.R., Hong, H., Cai, W.: Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4, 3833 (2012). Scholar
  12. 12.
    Chimene, D., Alge, D.L., Gaharwar, A.K.: Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv. Mater. 27, 7261–7284 (2015). Scholar
  13. 13.
    Luo, M., Fan, T., Zhou, Y., et al.: 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 29, 1808306 (2019). Scholar
  14. 14.
    Li, L., Yu, Y., Ye, G.J., et al.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). Scholar
  15. 15.
    Liu, H., Neal, A.T., Zhu, Z., et al.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014). Scholar
  16. 16.
    Castellanos-Gomez, A., Vicarelli, L., Prada, E., et al.: Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014). Scholar
  17. 17.
    Wang, X., Jones, A.M., Seyler, K.L., et al.: Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015). Scholar
  18. 18.
    Wang, Y.W., Liu, S., Zeng, B.W., et al.: Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots. Nanoscale 9, 4683–4690 (2017). Scholar
  19. 19.
    Wu, J., Koon, G.K.W., Xiang, D., et al.: Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano 9, 8070–8077 (2015). Scholar
  20. 20.
    Zhu, M., Osakada, Y., Kim, S., et al.: Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Appl. Catal. B Environ. 217, 285–292 (2017). Scholar
  21. 21.
    Qiu, M., Wang, D., Liang, W., et al.: Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. 115, 501–506 (2018). Scholar
  22. 22.
    Shao, J., Xie, H., Huang, H., et al.: Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016). Scholar
  23. 23.
    Fojtů, M., Chia, X., Sofer, Z., et al.: Black phosphorus nanoparticles potentiate the anticancer effect of oxaliplatin in ovarian cancer cell line. Adv. Funct. Mater. 27, 1701955 (2017). Scholar
  24. 24.
    Lee, H.U., Park, S.Y., Lee, S.C., et al.: Black phosphorus (BP) nanodots for potential biomedical applications. Small 12, 214–219 (2016). Scholar
  25. 25.
    Wei, Q., Peng, X.: Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014). Scholar
  26. 26.
    Jiang, J.-W., Park, H.S.: Mechanical properties of single-layer black phosphorus. J. Phys. D Appl. Phys. 47, 385304 (2014). Scholar
  27. 27.
    Li, X., Deng, B., Wang, X., et al.: Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2, 031002 (2015). Scholar
  28. 28.
    Chen, Y., Ren, R., Pu, H., et al.: Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 89, 505–510 (2017). Scholar
  29. 29.
    Zhang, X., Zhang, Z., Zhang, S., et al.: Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms. Small 13, 1701210 (2017). Scholar
  30. 30.
    Latiff, N.M., Teo, W.Z., Sofer, Z., et al.: The cytotoxicity of layered black phosphorus. Chem. A Eur. J. 21, 13991–13995 (2015). Scholar
  31. 31.
    Lin, J., Wang, S., Huang, P., et al.: Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7, 5320–5329 (2013). Scholar
  32. 32.
    Thangavel, S., Yoshitomi, T., Sakharkar, M.K., Nagasaki, Y.: Redox nanoparticle increases the chemotherapeutic efficiency of pioglitazone and suppresses its toxic side effects. Biomaterials 99, 109–123 (2016). Scholar
  33. 33.
    Sun, Z., Xie, H., Tang, S., et al.: Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chemie. Int. Ed. 54, 11526–11530 (2015). Scholar
  34. 34.
    Sun, C., Wen, L., Zeng, J., et al.: One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials 91, 81–89 (2016). Scholar
  35. 35.
    Zhao, Y., Tong, L., Li, Z., et al.: Stable and multifunctional dye-modified black phosphorus nanosheets for near-infrared imaging-guided photothermal therapy. Chem. Mater. 29, 7131–7139 (2017). Scholar
  36. 36.
    Xing, C., Chen, S., Qiu, M., et al.: Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy. Adv. Healthc. Mater. 7, 1701510 (2018). Scholar
  37. 37.
    Shao, J., Ruan, C., Xie, H., et al.: Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer. Adv. Sci. 5, 1700848 (2018). Scholar
  38. 38.
    Wang, H., Yang, X., Shao, W., et al.: Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 137, 11376–11382 (2015). Scholar
  39. 39.
    Guo, T., Wu, Y., Lin, Y., et al.: Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy. Small 14, 1702815 (2018). Scholar
  40. 40.
    Song, G., Chen, M., Zhang, Y., et al.: Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano Lett. 18, 182–189 (2018). Scholar
  41. 41.
    Ju, Y., Zhang, H., Yu, J., et al.: Monodisperse Au–Fe2C Janus nanoparticles: an attractive multifunctional material for triple-modal imaging-guided tumor photothermal therapy. ACS Nano 11, 9239–9248 (2017). Scholar
  42. 42.
    Song, J., Wu, B., Zhou, Z., et al.: Double-layered plasmonic-magnetic vesicles by self-assembly of Janus amphiphilic gold-iron(II, III) oxide nanoparticles. Angew. Chemie. Int. Ed. 56, 8110–8114 (2017). Scholar
  43. 43.
    Zhang, D., Lin, Z., Lan, S., et al.: The design of Janus black phosphorus quantum dots@metal–organic nanoparticles for simultaneously enhancing environmental stability and photodynamic therapy efficiency. Mater. Chem. Front. 3, 656–663 (2019). Scholar
  44. 44.
    Dong, Z., Gong, H., Gao, M., et al.: polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics 6, 1031–1042 (2016). Scholar
  45. 45.
    Sun, X., Wang, C., Gao, M., et al.: Remotely controlled red blood cell carriers for cancer targeting and near-infrared light-triggered drug release in combined photothermal-chemotherapy. Adv. Funct. Mater. 25, 2386–2394 (2015). Scholar
  46. 46.
    Ogretmen, B., Safa, A.R.: Expression of the mutated p53 tumor suppressor protein and its molecular and biochemical characterization in multidrug resistant MCF-7/Adr human breast cancer cells. Oncogene 14, 499–506 (1997). Scholar
  47. 47.
    Wu, F., Zhang, M., Chu, X., et al.: Black phosphorus nanosheets-based nanocarriers for enhancing chemotherapy drug sensitiveness via depleting mutant p53 and resistant cancer multimodal therapy. Chem. Eng. J. 370, 387–399 (2019). Scholar
  48. 48.
    Zong, S., Wang, L., Yang, Z., et al.: Black phosphorus-based drug nanocarrier for targeted and synergetic chemophotothermal therapy of acute lymphoblastic leukemia. ACS Appl. Mater. Interfaces 11, 5896–5902 (2019). Scholar
  49. 49.
    Yin, F., Hu, K., Chen, S., et al.: Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. J. Mater. Chem. B 5, 5433–5440 (2017). Scholar
  50. 50.
    Baumann, B., Jungst, T., Stichler, S., et al.: Control of nanoparticle release kinetics from 3D printed hydrogel scaffolds. Angew. Chemie. Int. Ed. 56, 4623–4628 (2017). Scholar
  51. 51.
    Khademhosseini, A., Langer, R.: A decade of progress in tissue engineering. Nat. Protoc. 11, 1775–1781 (2016). Scholar
  52. 52.
    Zhang, Y., Zhai, D., Xu, M., et al.: 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication 9, 025037 (2017). Scholar
  53. 53.
    Shi, W., Sun, M., Hu, X., et al.: Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Adv. Mater. 29, 1701089 (2017). Scholar
  54. 54.
    Yang, B., Yin, J., Chen, Y., et al.: 2D-black-phosphorus-reinforced 3D-printed scaffolds: a stepwise countermeasure for osteosarcoma. Adv. Mater. 30, 1705611 (2018). Scholar
  55. 55.
    Xu, M., Wang, L.V.: Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006). Scholar
  56. 56.
    Li, C., Wang, L.V.: Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol. 54, R59–R97 (2009). Scholar
  57. 57.
    Wang, L.V.: Multiscale photoacoustic microscopy and computed tomography. Nat. Photon. 3, 503–509 (2009). Scholar
  58. 58.
    Sun, Z., Zhao, Y., Li, Z., et al.: TiL4—coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small 13, 1602896 (2017). Scholar
  59. 59.
    Carr, J.A., Franke, D., Caram, J.R., et al.: Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl. Acad. Sci. 115, 4465–4470 (2018). Scholar
  60. 60.
    Zhang, M., Wang, W., Cui, Y., et al.: Near-infrared light-mediated photodynamic/photothermal therapy nanoplatform by the assembly of Fe3O4 carbon dots with graphitic black phosphorus quantum dots. Int. J. Nanomed. 13, 2803–2819 (2018). Scholar
  61. 61.
    Liu, T., Wang, C., Cui, W., et al.: Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets. Nanoscale 6, 11219–11225 (2014). Scholar
  62. 62.
    Yang, X., Wang, D., Shi, Y., et al.: Black phosphorus nanosheets immobilizing Ce6 for imaging-guided photothermal/photodynamic cancer therapy. ACS Appl. Mater. Interfaces 10, 12431–12440 (2018). Scholar
  63. 63.
    Lane, L.A., Qian, X., Nie, S.: SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem. Rev. 115, 10489–10529 (2015). Scholar
  64. 64.
    Liu, Z., Chen, H., Jia, Y., et al.: A two-dimensional fingerprint nanoprobe based on black phosphorus for bio-SERS analysis and chemo-photothermal therapy. Nanoscale 10, 18795–18804 (2018). Scholar
  65. 65.
    Zhao, Y., Zhang, Y.-H., Zhuge, Z., et al.: Synthesis of a poly-l-lysine/black phosphorus hybrid for biosensors. Anal. Chem. 90, 3149–3155 (2018). Scholar
  66. 66.
    Kumar, V., Brent, J.R., Shorie, M., et al.: Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces 8, 22860–22868 (2016). Scholar
  67. 67.
    Yew, Y.T., Sofer, Z., Mayorga-Martinez, C.C., Pumera, M.: Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection. Mater. Chem. Front. 1, 1130–1136 (2017). Scholar
  68. 68.
    Qiu, M., Singh, A., Wang, D., et al.: Biocompatible and biodegradable inorganic nanostructures for nanomedicine: silicon and black phosphorus. Nano Today 25, 135–155 (2019). Scholar
  69. 69.
    Li, Z., Xu, H., Shao, J., et al.: Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. Appl. Mater. Today 15, 297–304 (2019). Scholar
  70. 70.
    Li, Y., Tang, J., Pan, D.-X., et al.: A versatile imaging and therapeutic platform based on dual-band luminescent lanthanide nanoparticles toward tumor metastasis inhibition. ACS Nano 10, 2766–2773 (2016). Scholar
  71. 71.
    Chen, G., Ågren, H., Ohulchanskyy, T.Y., Prasad, P.N.: Light upconverting core–shell nanostructures: nanophotonic control for emerging applications. Chem. Soc. Rev. 44, 1680–1713 (2015). Scholar
  72. 72.
    Zheng, W., Huang, P., Tu, D., et al.: Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 44, 1379–1415 (2015). Scholar
  73. 73.
    Lv, R., Yang, D., Yang, P., et al.: Integration of upconversion nanoparticles and ultrathin black phosphorus for efficient photodynamic theranostics under 808 nm near-infrared light irradiation. Chem. Mater. 28, 4724–4734 (2016). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sashivinay Kumar Gaddam
    • 1
  • Ramyakrishna Pothu
    • 2
  • Aditya Saran
    • 3
  • Rajender Boddula
    • 4
    Email author
  1. 1.LAMTUF Plastics Private LtdHyderabadIndia
  2. 2.College of Chemistry and Chemical EngineeringHunan UniversityChangshaPeople’s Republic of China
  3. 3.Department of MicrobiologyMarwadi UniversityRajkotIndia
  4. 4.CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijingPeople’s Republic of China

Personalised recommendations