Skip to main content

Biomedical Applications of Black Phosphorus

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Two dimensional (2D) materials have attracted extravagant eminence in the area of biomedical applications due to their distinctive structure, biocompatibility, and physicochemical properties. Mono-layered black phosphorus (BP), also known as phosphorene, is a thermodynamically stable allotrope of phosphorous and is the very recent member of the 2D family has lured tremendous scientific interest since its rediscovery in 2014. The exceptional properties of BP including high carrier mobility, large specific surface area, tunable band gap, intrinsic anisotropy, and inherent in vivo biocompatibility and biodegradability make it an ideal alternative to other 2D materials in biomedical applications. This chapter summarizes various biomedical applications of BP including drug delivery, bio-imaging, bio-sensing, photothermal/photodynamic therapy, and theranostics. The main focus of this chapter is to emphasize the efficacy of BP nanosheets (NSs) and quantum dots (QDs) as robust and tunable diagnostic and therapeutic platforms. Finally, the current challenges and future perspectives in biomedical applications of BP have also been addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. de Menezes, B.R.C., Rodrigues, K.F., da Silva Fonseca, B.C., et al.: Recent advances in the use of carbon nanotubes as smart biomaterials. J. Mater. Chem. B 7, 1343–1360 (2019). https://doi.org/10.1039/C8TB02419G

    Article  Google Scholar 

  2. Patz, J.A., Graczyk, T.K., Geller, N., Vittor, A.Y.: Effects of environmental change on emerging parasitic diseases. Int. J. Parasitol. 30, 1395–1405 (2000). https://doi.org/10.1016/S0020-7519(00)00141-7

    Article  CAS  Google Scholar 

  3. Kumar, S., Rani, R., Dilbaghi, N., et al.: Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem. Soc. Rev. 46, 158–196 (2017). https://doi.org/10.1039/C6CS00517A

    Article  CAS  Google Scholar 

  4. Partha, R., Conyers, J.L.: Biomedical applications of functionalized fullerene-based nanomaterials. Int. J. Nanomed. 4, 261–275 (2009)

    Article  CAS  Google Scholar 

  5. Gao, J., Wang, H.L., Shreve, A., Iyer, R.: Fullerene derivatives induce premature senescence: a new toxicity paradigm or novel biomedical applications. Toxicol. Appl. Pharmacol. 244, 130–143 (2010). https://doi.org/10.1016/J.TAAP.2009.12.025

    Article  CAS  Google Scholar 

  6. Erol, O., Uyan, I., Hatip, M., et al.: Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications. Nanomed. Nanotechnol. Biol. Med. 14, 2433–2454 (2018). https://doi.org/10.1016/J.NANO.2017.03.021

    Article  CAS  Google Scholar 

  7. Bianco, A., Kostarelos, K., Partidos, C.D., Prato, M.: Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 0, 571 (2005). https://doi.org/10.1039/b410943k

  8. Klingeler, R., Sim, R.B.: Carbon Nanotubes for Biomedical Applications. Springer, Berlin, Heidelberg (2011)

    Book  Google Scholar 

  9. Shen, H., Zhang, L., Liu, M., Zhang, Z.: Biomedical applications of graphene. Theranostics 2, 283–294 (2012). https://doi.org/10.7150/thno.3642

    Article  CAS  Google Scholar 

  10. Yang, Y., Asiri, A.M., Tang, Z., et al.: Graphene based materials for biomedical applications. Mater. Today 16, 365–373 (2013). https://doi.org/10.1016/J.MATTOD.2013.09.004

    Article  CAS  Google Scholar 

  11. Zhang, Y., Nayak, T.R., Hong, H., Cai, W.: Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4, 3833 (2012). https://doi.org/10.1039/c2nr31040f

    Article  CAS  Google Scholar 

  12. Chimene, D., Alge, D.L., Gaharwar, A.K.: Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv. Mater. 27, 7261–7284 (2015). https://doi.org/10.1002/adma.201502422

    Article  CAS  Google Scholar 

  13. Luo, M., Fan, T., Zhou, Y., et al.: 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 29, 1808306 (2019). https://doi.org/10.1002/adfm.201808306

    Article  CAS  Google Scholar 

  14. Li, L., Yu, Y., Ye, G.J., et al.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35

    Article  CAS  Google Scholar 

  15. Liu, H., Neal, A.T., Zhu, Z., et al.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014). https://doi.org/10.1021/nn501226z

    Article  CAS  Google Scholar 

  16. Castellanos-Gomez, A., Vicarelli, L., Prada, E., et al.: Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014). https://doi.org/10.1088/2053-1583/1/2/025001

    Article  Google Scholar 

  17. Wang, X., Jones, A.M., Seyler, K.L., et al.: Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015). https://doi.org/10.1038/nnano.2015.71

    Article  CAS  Google Scholar 

  18. Wang, Y.W., Liu, S., Zeng, B.W., et al.: Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots. Nanoscale 9, 4683–4690 (2017). https://doi.org/10.1039/C6NR09235G

    Article  CAS  Google Scholar 

  19. Wu, J., Koon, G.K.W., Xiang, D., et al.: Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano 9, 8070–8077 (2015). https://doi.org/10.1021/acsnano.5b01922

    Article  CAS  Google Scholar 

  20. Zhu, M., Osakada, Y., Kim, S., et al.: Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Appl. Catal. B Environ. 217, 285–292 (2017). https://doi.org/10.1016/J.APCATB.2017.06.002

    Article  CAS  Google Scholar 

  21. Qiu, M., Wang, D., Liang, W., et al.: Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. 115, 501–506 (2018). https://doi.org/10.1073/PNAS.1714421115

    Article  CAS  Google Scholar 

  22. Shao, J., Xie, H., Huang, H., et al.: Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016). https://doi.org/10.1038/ncomms12967

    Article  CAS  Google Scholar 

  23. Fojtů, M., Chia, X., Sofer, Z., et al.: Black phosphorus nanoparticles potentiate the anticancer effect of oxaliplatin in ovarian cancer cell line. Adv. Funct. Mater. 27, 1701955 (2017). https://doi.org/10.1002/adfm.201701955

    Article  CAS  Google Scholar 

  24. Lee, H.U., Park, S.Y., Lee, S.C., et al.: Black phosphorus (BP) nanodots for potential biomedical applications. Small 12, 214–219 (2016). https://doi.org/10.1002/smll.201502756

    Article  CAS  Google Scholar 

  25. Wei, Q., Peng, X.: Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014). https://doi.org/10.1063/1.4885215

    Article  CAS  Google Scholar 

  26. Jiang, J.-W., Park, H.S.: Mechanical properties of single-layer black phosphorus. J. Phys. D Appl. Phys. 47, 385304 (2014). https://doi.org/10.1088/0022-3727/47/38/385304

    Article  CAS  Google Scholar 

  27. Li, X., Deng, B., Wang, X., et al.: Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2, 031002 (2015). https://doi.org/10.1088/2053-1583/2/3/031002

    Article  Google Scholar 

  28. Chen, Y., Ren, R., Pu, H., et al.: Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 89, 505–510 (2017). https://doi.org/10.1016/J.BIOS.2016.03.059

    Article  CAS  Google Scholar 

  29. Zhang, X., Zhang, Z., Zhang, S., et al.: Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms. Small 13, 1701210 (2017). https://doi.org/10.1002/smll.201701210

    Article  CAS  Google Scholar 

  30. Latiff, N.M., Teo, W.Z., Sofer, Z., et al.: The cytotoxicity of layered black phosphorus. Chem. A Eur. J. 21, 13991–13995 (2015). https://doi.org/10.1002/chem.201502006

    Article  CAS  Google Scholar 

  31. Lin, J., Wang, S., Huang, P., et al.: Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7, 5320–5329 (2013). https://doi.org/10.1021/nn4011686

    Article  CAS  Google Scholar 

  32. Thangavel, S., Yoshitomi, T., Sakharkar, M.K., Nagasaki, Y.: Redox nanoparticle increases the chemotherapeutic efficiency of pioglitazone and suppresses its toxic side effects. Biomaterials 99, 109–123 (2016). https://doi.org/10.1016/J.BIOMATERIALS.2016.05.001

    Article  CAS  Google Scholar 

  33. Sun, Z., Xie, H., Tang, S., et al.: Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chemie. Int. Ed. 54, 11526–11530 (2015). https://doi.org/10.1002/anie.201506154

    Article  CAS  Google Scholar 

  34. Sun, C., Wen, L., Zeng, J., et al.: One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials 91, 81–89 (2016). https://doi.org/10.1016/J.BIOMATERIALS.2016.03.022

    Article  CAS  Google Scholar 

  35. Zhao, Y., Tong, L., Li, Z., et al.: Stable and multifunctional dye-modified black phosphorus nanosheets for near-infrared imaging-guided photothermal therapy. Chem. Mater. 29, 7131–7139 (2017). https://doi.org/10.1021/acs.chemmater.7b01106

    Article  CAS  Google Scholar 

  36. Xing, C., Chen, S., Qiu, M., et al.: Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy. Adv. Healthc. Mater. 7, 1701510 (2018). https://doi.org/10.1002/adhm.201701510

    Article  CAS  Google Scholar 

  37. Shao, J., Ruan, C., Xie, H., et al.: Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer. Adv. Sci. 5, 1700848 (2018). https://doi.org/10.1002/advs.201700848

    Article  CAS  Google Scholar 

  38. Wang, H., Yang, X., Shao, W., et al.: Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 137, 11376–11382 (2015). https://doi.org/10.1021/jacs.5b06025

    Article  CAS  Google Scholar 

  39. Guo, T., Wu, Y., Lin, Y., et al.: Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy. Small 14, 1702815 (2018). https://doi.org/10.1002/smll.201702815

    Article  CAS  Google Scholar 

  40. Song, G., Chen, M., Zhang, Y., et al.: Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano Lett. 18, 182–189 (2018). https://doi.org/10.1021/acs.nanolett.7b03829

    Article  CAS  Google Scholar 

  41. Ju, Y., Zhang, H., Yu, J., et al.: Monodisperse Au–Fe2C Janus nanoparticles: an attractive multifunctional material for triple-modal imaging-guided tumor photothermal therapy. ACS Nano 11, 9239–9248 (2017). https://doi.org/10.1021/acsnano.7b04461

    Article  CAS  Google Scholar 

  42. Song, J., Wu, B., Zhou, Z., et al.: Double-layered plasmonic-magnetic vesicles by self-assembly of Janus amphiphilic gold-iron(II, III) oxide nanoparticles. Angew. Chemie. Int. Ed. 56, 8110–8114 (2017). https://doi.org/10.1002/anie.201702572

    Article  CAS  Google Scholar 

  43. Zhang, D., Lin, Z., Lan, S., et al.: The design of Janus black phosphorus quantum dots@metal–organic nanoparticles for simultaneously enhancing environmental stability and photodynamic therapy efficiency. Mater. Chem. Front. 3, 656–663 (2019). https://doi.org/10.1039/C8QM00623G

    Article  CAS  Google Scholar 

  44. Dong, Z., Gong, H., Gao, M., et al.: polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics 6, 1031–1042 (2016). https://doi.org/10.7150/thno.14431

    Article  CAS  Google Scholar 

  45. Sun, X., Wang, C., Gao, M., et al.: Remotely controlled red blood cell carriers for cancer targeting and near-infrared light-triggered drug release in combined photothermal-chemotherapy. Adv. Funct. Mater. 25, 2386–2394 (2015). https://doi.org/10.1002/adfm.201500061

    Article  CAS  Google Scholar 

  46. Ogretmen, B., Safa, A.R.: Expression of the mutated p53 tumor suppressor protein and its molecular and biochemical characterization in multidrug resistant MCF-7/Adr human breast cancer cells. Oncogene 14, 499–506 (1997). https://doi.org/10.1038/sj.onc.1200855

    Article  CAS  Google Scholar 

  47. Wu, F., Zhang, M., Chu, X., et al.: Black phosphorus nanosheets-based nanocarriers for enhancing chemotherapy drug sensitiveness via depleting mutant p53 and resistant cancer multimodal therapy. Chem. Eng. J. 370, 387–399 (2019). https://doi.org/10.1016/J.CEJ.2019.03.228

    Article  CAS  Google Scholar 

  48. Zong, S., Wang, L., Yang, Z., et al.: Black phosphorus-based drug nanocarrier for targeted and synergetic chemophotothermal therapy of acute lymphoblastic leukemia. ACS Appl. Mater. Interfaces 11, 5896–5902 (2019). https://doi.org/10.1021/acsami.8b22563

    Article  CAS  Google Scholar 

  49. Yin, F., Hu, K., Chen, S., et al.: Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. J. Mater. Chem. B 5, 5433–5440 (2017). https://doi.org/10.1039/C7TB01068K

    Article  CAS  Google Scholar 

  50. Baumann, B., Jungst, T., Stichler, S., et al.: Control of nanoparticle release kinetics from 3D printed hydrogel scaffolds. Angew. Chemie. Int. Ed. 56, 4623–4628 (2017). https://doi.org/10.1002/anie.201700153

    Article  CAS  Google Scholar 

  51. Khademhosseini, A., Langer, R.: A decade of progress in tissue engineering. Nat. Protoc. 11, 1775–1781 (2016). https://doi.org/10.1038/nprot.2016.123

    Article  CAS  Google Scholar 

  52. Zhang, Y., Zhai, D., Xu, M., et al.: 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication 9, 025037 (2017). https://doi.org/10.1088/1758-5090/aa6ed6

    Article  CAS  Google Scholar 

  53. Shi, W., Sun, M., Hu, X., et al.: Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Adv. Mater. 29, 1701089 (2017). https://doi.org/10.1002/adma.201701089

    Article  CAS  Google Scholar 

  54. Yang, B., Yin, J., Chen, Y., et al.: 2D-black-phosphorus-reinforced 3D-printed scaffolds: a stepwise countermeasure for osteosarcoma. Adv. Mater. 30, 1705611 (2018). https://doi.org/10.1002/adma.201705611

    Article  CAS  Google Scholar 

  55. Xu, M., Wang, L.V.: Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006). https://doi.org/10.1063/1.2195024

    Article  CAS  Google Scholar 

  56. Li, C., Wang, L.V.: Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol. 54, R59–R97 (2009). https://doi.org/10.1088/0031-9155/54/19/R01

    Article  CAS  Google Scholar 

  57. Wang, L.V.: Multiscale photoacoustic microscopy and computed tomography. Nat. Photon. 3, 503–509 (2009). https://doi.org/10.1038/nphoton.2009.157

    Article  CAS  Google Scholar 

  58. Sun, Z., Zhao, Y., Li, Z., et al.: TiL4—coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small 13, 1602896 (2017). https://doi.org/10.1002/smll.201602896

    Article  CAS  Google Scholar 

  59. Carr, J.A., Franke, D., Caram, J.R., et al.: Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl. Acad. Sci. 115, 4465–4470 (2018). https://doi.org/10.1073/PNAS.1718917115

    Article  CAS  Google Scholar 

  60. Zhang, M., Wang, W., Cui, Y., et al.: Near-infrared light-mediated photodynamic/photothermal therapy nanoplatform by the assembly of Fe3O4 carbon dots with graphitic black phosphorus quantum dots. Int. J. Nanomed. 13, 2803–2819 (2018). https://doi.org/10.2147/IJN.S156434

    Article  CAS  Google Scholar 

  61. Liu, T., Wang, C., Cui, W., et al.: Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets. Nanoscale 6, 11219–11225 (2014). https://doi.org/10.1039/C4NR03753G

    Article  CAS  Google Scholar 

  62. Yang, X., Wang, D., Shi, Y., et al.: Black phosphorus nanosheets immobilizing Ce6 for imaging-guided photothermal/photodynamic cancer therapy. ACS Appl. Mater. Interfaces 10, 12431–12440 (2018). https://doi.org/10.1021/acsami.8b00276

    Article  CAS  Google Scholar 

  63. Lane, L.A., Qian, X., Nie, S.: SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem. Rev. 115, 10489–10529 (2015). https://doi.org/10.1021/acs.chemrev.5b00265

    Article  CAS  Google Scholar 

  64. Liu, Z., Chen, H., Jia, Y., et al.: A two-dimensional fingerprint nanoprobe based on black phosphorus for bio-SERS analysis and chemo-photothermal therapy. Nanoscale 10, 18795–18804 (2018). https://doi.org/10.1039/C8NR05300F

    Article  CAS  Google Scholar 

  65. Zhao, Y., Zhang, Y.-H., Zhuge, Z., et al.: Synthesis of a poly-l-lysine/black phosphorus hybrid for biosensors. Anal. Chem. 90, 3149–3155 (2018). https://doi.org/10.1021/acs.analchem.7b04395

    Article  CAS  Google Scholar 

  66. Kumar, V., Brent, J.R., Shorie, M., et al.: Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces 8, 22860–22868 (2016). https://doi.org/10.1021/acsami.6b06488

    Article  CAS  Google Scholar 

  67. Yew, Y.T., Sofer, Z., Mayorga-Martinez, C.C., Pumera, M.: Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection. Mater. Chem. Front. 1, 1130–1136 (2017). https://doi.org/10.1039/C6QM00341A

    Article  CAS  Google Scholar 

  68. Qiu, M., Singh, A., Wang, D., et al.: Biocompatible and biodegradable inorganic nanostructures for nanomedicine: silicon and black phosphorus. Nano Today 25, 135–155 (2019). https://doi.org/10.1016/J.NANTOD.2019.02.012

    Article  CAS  Google Scholar 

  69. Li, Z., Xu, H., Shao, J., et al.: Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. Appl. Mater. Today 15, 297–304 (2019). https://doi.org/10.1016/J.APMT.2019.02.002

    Article  Google Scholar 

  70. Li, Y., Tang, J., Pan, D.-X., et al.: A versatile imaging and therapeutic platform based on dual-band luminescent lanthanide nanoparticles toward tumor metastasis inhibition. ACS Nano 10, 2766–2773 (2016). https://doi.org/10.1021/acsnano.5b07873

    Article  CAS  Google Scholar 

  71. Chen, G., Ågren, H., Ohulchanskyy, T.Y., Prasad, P.N.: Light upconverting core–shell nanostructures: nanophotonic control for emerging applications. Chem. Soc. Rev. 44, 1680–1713 (2015). https://doi.org/10.1039/C4CS00170B

    Article  CAS  Google Scholar 

  72. Zheng, W., Huang, P., Tu, D., et al.: Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 44, 1379–1415 (2015). https://doi.org/10.1039/C4CS00178H

    Article  CAS  Google Scholar 

  73. Lv, R., Yang, D., Yang, P., et al.: Integration of upconversion nanoparticles and ultrathin black phosphorus for efficient photodynamic theranostics under 808 nm near-infrared light irradiation. Chem. Mater. 28, 4724–4734 (2016). https://doi.org/10.1021/acs.chemmater.6b01720

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajender Boddula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaddam, S.K., Pothu, R., Saran, A., Boddula, R. (2020). Biomedical Applications of Black Phosphorus. In: Inamuddin, Boddula, R., Asiri, A. (eds) Black Phosphorus. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29555-4_6

Download citation

Publish with us

Policies and ethics