Advertisement

Simulation Studies for Black Phosphorus: From Theory to Experiment

  • Muhammad ImranEmail author
  • Fayyaz HussainEmail author
  • Abdul Rehman
  • R. M. Arif Khalil
  • Tariq Munir
  • M. Zeeshan Yaqoob
  • Sungjun KimEmail author
Chapter
  • 426 Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Phosphorene or 2D black phosphorus have attracted enormous attention of researcher due to its excellent structural, mechanical, electronic, magnetic and vibrational properties. This chapter presents a comprehensive review of properties of black phosphorus, techniques of improving its properties and to date most of the significant research conducted in this field of research. Studies show that most of the simulation research has been performed using molecular dynamics and density functional theory. The mechanical properties of black phosphorus have been excellent and can be tunned using defect engineering. Electronic and magnetic properties have been studied using density functional theory. It is observed that both can be successfully tuned by substituting doping of the suitable impurity atoms. Black phosphorus in its pristine form is expected to have nonmagnetic behaviour with can be revert to ferromagnetic by addition of suitable dopant which causes orbital hybridization resulting in ferromagnetism. The modes of vibrations for black phosphorene were calculated using the supercell method and these modes are characterized for IR and Raman spectroscopy. Theoretical calculated IR and Raman active modes are comparable with experimental available results.

Keywords

Phosphorene Black phosphorus 2D materials Ferromagnetism DFT Molecular dynamics 

References

  1. 1.
    Bridgman, P.: Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914)Google Scholar
  2. 2.
    Keyes, R.W.: The electrical properties of black phosphorus. Phys. Rev. 92, 580 (1953)Google Scholar
  3. 3.
    Eda, G., Fanchini, G., Chhowalla, M.: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270 (2008)Google Scholar
  4. 4.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)Google Scholar
  5. 5.
    Tran, V., Soklaski, R., Liang, Y., Yang, L.: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014)Google Scholar
  6. 6.
    Zhang, R., Zhang, Y., Yu, H., Zhang, H., Yang, R., Yang, B., Liu, Z., Wang, J.: Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared. Adv. Optic. Mater. 3, 1787–1792 (2015)Google Scholar
  7. 7.
    Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)Google Scholar
  8. 8.
    Qiao, J., Kong, X., Hu, Z.-X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014)Google Scholar
  9. 9.
    Fei, R., Yang, L.: Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14, 2884–2889 (2014)Google Scholar
  10. 10.
    Luo, Z., Maassen, J., Deng, Y., Du, Y., Garrelts, R.P., Lundstrom, M.S., Peide, D.Y., Xu, X.: Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015)Google Scholar
  11. 11.
    Jiang, J.-W., Park, H.S.: Mechanical properties of single-layer black phosphorus. J. Phys. D Appl. Phys. 47, 385304 (2014)Google Scholar
  12. 12.
    Hu, T., Han, Y., Dong, J.: Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains. Nanotechnology 25, 455703 (2014)Google Scholar
  13. 13.
    Wei, Q., Peng, X.: Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014)Google Scholar
  14. 14.
    Sha, Z.-D., Pei, Q.-X., Ding, Z., Jiang, J.-W., Zhang, Y.-W.: Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures. J. Phys. D Appl. Phys. 48, 395303 (2015)Google Scholar
  15. 15.
    Yang, Z., Zhao, J., Wei, N.: Temperature-dependent mechanical properties of monolayer black phosphorus by molecular dynamics simulations. Appl. Phys. Lett. 107, 023107 (2015)Google Scholar
  16. 16.
    Hu, W., Yang, J.: Defects in phosphorene. J. Phys. Chem. C 119, 20474–20480 (2015)Google Scholar
  17. 17.
    Farooq, M.U., Hashmi, A., Hong, J.: Anisotropic bias dependent transport property of defective phosphorene layer. Sci. Rep. 5, 12482 (2015)Google Scholar
  18. 18.
    Li, X.-B., Guo, P., Cao, T.-F., Liu, H., Lau, W.-M., Liu, L.-M.: Structures, stabilities, and electronic properties of defects in monolayer black phosphorus. Sci. Rep. 5, 10848 (2015)Google Scholar
  19. 19.
    Hao, F., Chen, X.: First-principles study of the defected phosphorene under tensile strain. J. Appl. Phys. 120, 165104 (2016)Google Scholar
  20. 20.
    Xiao, H., Shi, X., Hao, F., Liao, X., Zhang, Y., Chen, X.: Development of a transferable reactive force field of P/H systems: application to the chemical and mechanical properties of phosphorene. J. Phys. Chem. A 121, 6135–6149 (2017)Google Scholar
  21. 21.
    Sha, Z.-D., Pei, Q.-X., Zhang, Y.-Y., Zhang, Y.-W.: Atomic vacancies significantly degrade the mechanical properties of phosphorene. Nanotechnology 27, 315704 (2016)Google Scholar
  22. 22.
    Lalitha, M., Nataraj, Y., Lakshmipathi, S.: Calcium decorated and doped phosphorene for gas adsorption. Appl. Surf. Sci. 377, 311–323 (2016)Google Scholar
  23. 23.
    Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372 (2014)Google Scholar
  24. 24.
    Hussain, F., Imran, M., Rana, A.M., Ismail, M., Arif Khalil, R.M., Sattar, M.A., Javid, M.A., Majid, A., Cai, Y.: Phys. E: Low-dimension. Syst. Nanostruct. 106, 352–356 (2019)Google Scholar
  25. 25.
    Phuc, H.V., Hieu, N.N., Ilyasov, V.V., Phuong, L.T.T., Nguyen, C.V.: First principles study of the electronic properties and band gap modulation of two-dimensional phosphorene monolayer: effect of strain engineering. Superlattices Microstruct. 118, 289–297 (2018)Google Scholar
  26. 26.
    Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)CrossRefGoogle Scholar
  27. 27.
    Rezaee, A.E., Kashi, M.A., Baktash, A.: Stone-wales like defects formation, stability and reactivity in black phosphorene. Mater. Sci. Eng., B 236–237, 208–216 (2018)Google Scholar
  28. 28.
    Nguyen, D.T., Le, M.Q., Nguyen, V.T., Bui, T.L.: Effects of various defects on the mechanical properties of black phosphorene. Superlattices Microstruct. 112, 186–199 (2017)Google Scholar
  29. 29.
    Sorkin, V., Cai, Y.Q., Srolovitz, D.J., Zhang, Y.W.: Mechanical twinning in phosphorene. Extreme Mech. Lett. 19, 15–19 (2018)Google Scholar
  30. 30.
    Zhou, W., Zou, H., Xiong, X., Zhou, Y., Liu, R., Ouyang, F.: Doping effects on the electronic properties of armchair phosphorene nanoribbons: a first-principles study. Phys. E 94, 53–58 (2017)Google Scholar
  31. 31.
    Tran, V., Soklaski, R., Liang, Y., Yang, L.: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014)Google Scholar
  32. 32.
    Çakır, D., Sahin, H., Peeters, F.M.: Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B 90, 205421 (2014)Google Scholar
  33. 33.
    Carvalho, A., Rodin, A.S., Neto, A.H.C.: Phosphorene nanoribbons. EPL-Europhys. Lett. 108, 47005 (2014)Google Scholar
  34. 34.
    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., et al.: Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009)Google Scholar
  35. 35.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)Google Scholar
  36. 36.
    Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671 (1992)Google Scholar
  37. 37.
    Ernzerhof, M., Scuseria, G.E.: Assessment of the perdewe burkee ernzerhof exchange correlation functional. J. Chem. Phys. 110(11), 5029e5036 (1999)Google Scholar
  38. 38.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)Google Scholar
  39. 39.
    Davletshin, A.R., Ustiuzhanina, S.V., Kistanov, A.A., Saadatmand, D., Dmitriev, S.V., Zhou, K., Korznikova, E.A.: Electronic structure of graphene– and BN–supported phosphorene. Phys. B: Condens. Matter 534, 63–67 (2018)Google Scholar
  40. 40.
    Wanga, Y., Songb, N., Donga, N., Zheng, Y., Yanga, X., Jianga, W., Wang, B.X.J.: Electronic, magnetic properties of 4d series transition metal substituted black phosphorene: a first-principles study. Appl. Surf. Sci. 480, 802–809 (2019)Google Scholar
  41. 41.
    Alfè, D.: A program to calculate phonons using the small displacement method. Comput. Phys. Commun. 180, 2622–2633 (2009)Google Scholar
  42. 42.
    Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005)Google Scholar
  43. 43.
    Khalil, R.M.A., Ahmad, J., Rana, A.M., Bukhari, S.H., Jamil, M.T., Tehreem, T., Nissar, U.: First principles investigation of structural, vibrational and thermal properties of black and blue phosphorene. Int. J. Mod. Phys. B 32, 1850151 (2018)Google Scholar
  44. 44.
    Brent, J.R., Savjani, N., Lewis, E.A., Haigh, S.J., Lewis, D.J., O’Brien, P.: Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 50, 1338 (2014)Google Scholar
  45. 45.
    Guo, Z., Zhang, H., Lu, S., Wang, Z., Tang, S., Shao, J., Sun, Z., Xie, H., Wang, H., Yu, X.F., Chu, P.K.: From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics. Adv. Funct. Mat. 25, 6996 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PhysicsGovt. College University FaisalabadFaisalabadPakistan
  2. 2.Materials Simulation Research Laboratory (MSRL), Department of PhysicsBahauddin Zakariya UniversityMultanPakistan
  3. 3.School of Electronics EngineeringChungbuk National UniversityCheonjuSouth Korea

Personalised recommendations