Skip to main content

Simulation Studies for Black Phosphorus: From Theory to Experiment

  • Chapter
  • First Online:
Black Phosphorus

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 889 Accesses

Abstract

Phosphorene or 2D black phosphorus have attracted enormous attention of researcher due to its excellent structural, mechanical, electronic, magnetic and vibrational properties. This chapter presents a comprehensive review of properties of black phosphorus, techniques of improving its properties and to date most of the significant research conducted in this field of research. Studies show that most of the simulation research has been performed using molecular dynamics and density functional theory. The mechanical properties of black phosphorus have been excellent and can be tunned using defect engineering. Electronic and magnetic properties have been studied using density functional theory. It is observed that both can be successfully tuned by substituting doping of the suitable impurity atoms. Black phosphorus in its pristine form is expected to have nonmagnetic behaviour with can be revert to ferromagnetic by addition of suitable dopant which causes orbital hybridization resulting in ferromagnetism. The modes of vibrations for black phosphorene were calculated using the supercell method and these modes are characterized for IR and Raman spectroscopy. Theoretical calculated IR and Raman active modes are comparable with experimental available results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bridgman, P.: Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914)

    CAS  Google Scholar 

  2. Keyes, R.W.: The electrical properties of black phosphorus. Phys. Rev. 92, 580 (1953)

    CAS  Google Scholar 

  3. Eda, G., Fanchini, G., Chhowalla, M.: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270 (2008)

    CAS  Google Scholar 

  4. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    CAS  Google Scholar 

  5. Tran, V., Soklaski, R., Liang, Y., Yang, L.: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014)

    Google Scholar 

  6. Zhang, R., Zhang, Y., Yu, H., Zhang, H., Yang, R., Yang, B., Liu, Z., Wang, J.: Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared. Adv. Optic. Mater. 3, 1787–1792 (2015)

    CAS  Google Scholar 

  7. Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)

    CAS  Google Scholar 

  8. Qiao, J., Kong, X., Hu, Z.-X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014)

    CAS  Google Scholar 

  9. Fei, R., Yang, L.: Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14, 2884–2889 (2014)

    CAS  Google Scholar 

  10. Luo, Z., Maassen, J., Deng, Y., Du, Y., Garrelts, R.P., Lundstrom, M.S., Peide, D.Y., Xu, X.: Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015)

    CAS  Google Scholar 

  11. Jiang, J.-W., Park, H.S.: Mechanical properties of single-layer black phosphorus. J. Phys. D Appl. Phys. 47, 385304 (2014)

    Google Scholar 

  12. Hu, T., Han, Y., Dong, J.: Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains. Nanotechnology 25, 455703 (2014)

    Google Scholar 

  13. Wei, Q., Peng, X.: Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014)

    Google Scholar 

  14. Sha, Z.-D., Pei, Q.-X., Ding, Z., Jiang, J.-W., Zhang, Y.-W.: Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures. J. Phys. D Appl. Phys. 48, 395303 (2015)

    Google Scholar 

  15. Yang, Z., Zhao, J., Wei, N.: Temperature-dependent mechanical properties of monolayer black phosphorus by molecular dynamics simulations. Appl. Phys. Lett. 107, 023107 (2015)

    Google Scholar 

  16. Hu, W., Yang, J.: Defects in phosphorene. J. Phys. Chem. C 119, 20474–20480 (2015)

    CAS  Google Scholar 

  17. Farooq, M.U., Hashmi, A., Hong, J.: Anisotropic bias dependent transport property of defective phosphorene layer. Sci. Rep. 5, 12482 (2015)

    Google Scholar 

  18. Li, X.-B., Guo, P., Cao, T.-F., Liu, H., Lau, W.-M., Liu, L.-M.: Structures, stabilities, and electronic properties of defects in monolayer black phosphorus. Sci. Rep. 5, 10848 (2015)

    CAS  Google Scholar 

  19. Hao, F., Chen, X.: First-principles study of the defected phosphorene under tensile strain. J. Appl. Phys. 120, 165104 (2016)

    Google Scholar 

  20. Xiao, H., Shi, X., Hao, F., Liao, X., Zhang, Y., Chen, X.: Development of a transferable reactive force field of P/H systems: application to the chemical and mechanical properties of phosphorene. J. Phys. Chem. A 121, 6135–6149 (2017)

    CAS  Google Scholar 

  21. Sha, Z.-D., Pei, Q.-X., Zhang, Y.-Y., Zhang, Y.-W.: Atomic vacancies significantly degrade the mechanical properties of phosphorene. Nanotechnology 27, 315704 (2016)

    Google Scholar 

  22. Lalitha, M., Nataraj, Y., Lakshmipathi, S.: Calcium decorated and doped phosphorene for gas adsorption. Appl. Surf. Sci. 377, 311–323 (2016)

    CAS  Google Scholar 

  23. Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372 (2014)

    CAS  Google Scholar 

  24. Hussain, F., Imran, M., Rana, A.M., Ismail, M., Arif Khalil, R.M., Sattar, M.A., Javid, M.A., Majid, A., Cai, Y.: Phys. E: Low-dimension. Syst. Nanostruct. 106, 352–356 (2019)

    Google Scholar 

  25. Phuc, H.V., Hieu, N.N., Ilyasov, V.V., Phuong, L.T.T., Nguyen, C.V.: First principles study of the electronic properties and band gap modulation of two-dimensional phosphorene monolayer: effect of strain engineering. Superlattices Microstruct. 118, 289–297 (2018)

    CAS  Google Scholar 

  26. Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  CAS  Google Scholar 

  27. Rezaee, A.E., Kashi, M.A., Baktash, A.: Stone-wales like defects formation, stability and reactivity in black phosphorene. Mater. Sci. Eng., B 236–237, 208–216 (2018)

    Google Scholar 

  28. Nguyen, D.T., Le, M.Q., Nguyen, V.T., Bui, T.L.: Effects of various defects on the mechanical properties of black phosphorene. Superlattices Microstruct. 112, 186–199 (2017)

    CAS  Google Scholar 

  29. Sorkin, V., Cai, Y.Q., Srolovitz, D.J., Zhang, Y.W.: Mechanical twinning in phosphorene. Extreme Mech. Lett. 19, 15–19 (2018)

    Google Scholar 

  30. Zhou, W., Zou, H., Xiong, X., Zhou, Y., Liu, R., Ouyang, F.: Doping effects on the electronic properties of armchair phosphorene nanoribbons: a first-principles study. Phys. E 94, 53–58 (2017)

    CAS  Google Scholar 

  31. Tran, V., Soklaski, R., Liang, Y., Yang, L.: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014)

    Google Scholar 

  32. Çakır, D., Sahin, H., Peeters, F.M.: Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B 90, 205421 (2014)

    Google Scholar 

  33. Carvalho, A., Rodin, A.S., Neto, A.H.C.: Phosphorene nanoribbons. EPL-Europhys. Lett. 108, 47005 (2014)

    Google Scholar 

  34. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., et al.: Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009)

    Google Scholar 

  35. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    CAS  Google Scholar 

  36. Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671 (1992)

    CAS  Google Scholar 

  37. Ernzerhof, M., Scuseria, G.E.: Assessment of the perdewe burkee ernzerhof exchange correlation functional. J. Chem. Phys. 110(11), 5029e5036 (1999)

    CAS  Google Scholar 

  38. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    CAS  Google Scholar 

  39. Davletshin, A.R., Ustiuzhanina, S.V., Kistanov, A.A., Saadatmand, D., Dmitriev, S.V., Zhou, K., Korznikova, E.A.: Electronic structure of graphene– and BN–supported phosphorene. Phys. B: Condens. Matter 534, 63–67 (2018)

    CAS  Google Scholar 

  40. Wanga, Y., Songb, N., Donga, N., Zheng, Y., Yanga, X., Jianga, W., Wang, B.X.J.: Electronic, magnetic properties of 4d series transition metal substituted black phosphorene: a first-principles study. Appl. Surf. Sci. 480, 802–809 (2019)

    Google Scholar 

  41. Alfè, D.: A program to calculate phonons using the small displacement method. Comput. Phys. Commun. 180, 2622–2633 (2009)

    Google Scholar 

  42. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005)

    CAS  Google Scholar 

  43. Khalil, R.M.A., Ahmad, J., Rana, A.M., Bukhari, S.H., Jamil, M.T., Tehreem, T., Nissar, U.: First principles investigation of structural, vibrational and thermal properties of black and blue phosphorene. Int. J. Mod. Phys. B 32, 1850151 (2018)

    Google Scholar 

  44. Brent, J.R., Savjani, N., Lewis, E.A., Haigh, S.J., Lewis, D.J., O’Brien, P.: Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 50, 1338 (2014)

    Google Scholar 

  45. Guo, Z., Zhang, H., Lu, S., Wang, Z., Tang, S., Shao, J., Sun, Z., Xie, H., Wang, H., Yu, X.F., Chu, P.K.: From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics. Adv. Funct. Mat. 25, 6996 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Imran , Fayyaz Hussain or Sungjun Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Imran, M. et al. (2020). Simulation Studies for Black Phosphorus: From Theory to Experiment. In: Inamuddin, Boddula, R., Asiri, A. (eds) Black Phosphorus. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29555-4_5

Download citation

Publish with us

Policies and ethics