Skip to main content

Functionalization and Doping of Black Phosphorus

  • Chapter
  • First Online:
Black Phosphorus

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Black phosphorus (BP), a new rising star in the post-graphene era, has been extensively studied from early 2014 onward. To take full advantage of its potential, much research is rapidly generated on the modification of BP-based nanostructures via functionalization, decoration, and doping. The fast-growing research in this area has led to significant trends in the fast-evolving field of 2D nanomaterials over a wide range of applications including field effect transistors, diodes, phonon detectors, biomedicine, digital circuits, sodium- and lithium-ion batteries, sensors, photocatalysis, electrocatalysis, thermoelectric materials, memory devices, and so forth. This chapter is aimed to present a state-of-the-art overview of the advancements of the field through the modifications mentioned above from both theoretical and experimental points of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

AFM:

Atomic force microscopy

AIBN:

Azodiisobutyronitrile

ALD:

Atomic layer deposition

BCS:

Bardeen–Cooper–Schrieffer

BP:

Black phosphorus

BPQD:

BP quantum dot

DCD:

Differential charge density

DFT:

Density functional theory

DMS:

Dilute magnetic semiconductor

DV:

Divacancy

ESE:

Emulsion solvent evaporation

F4-TCNQ:

Tetrafluoro tetracyanoquinodimethane

FET:

Field effect transistor

GGA:

Generalized gradient approximation

IR:

Infrared

LDOS:

Local density of states

MD:

Molecular dynamics

MGPT:

Mineralizer-assisted gas-phase transformation

MV:

Monovacancy

NDR:

Negative differential resistance

NIR:

Near-infrared

NVM:

Nonvolatile memory

PA:

Photoacoustic

PBC:

Periodic boundary conditions

PDDA:

Poly dimethyldiallyl ammonium chloride

PEG:

Polyethylene glycol

PGE:

Photogalvanic effect

PLGA:

Poly(lactic-co-glycolic acid)

PVR:

Peak-to-valley ratio

RP:

Red phosphorus

SPR:

Surface plasmon resonance

TCDD:

Tetrachlorodibenzo-p-dioxin

TCNQ:

Tetracyano-p-quinodimethane

TEM:

Transmission electron microscopy

TM:

Transition metal

TMD:

Transition metal dichalcogenide

TTF:

Tetrathiafulvalene

VBM:

Valence band maximum

VD:

Vacuum deposition

vdW:

van der Waals

WI:

Wet impregnation

WP:

White phosphorus

References

  1. Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., Castro Neto, A.H.: Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016). https://doi.org/10.1038/natrevmats.2016.61

    Article  CAS  Google Scholar 

  2. Du, Y., Luo, Z., Liu, H., Xu, X., Ye, P.D.: Anisotropic properties of black phosphorus. In: Avouris, P., Low, T., Heinz, T.F. (eds.) 2D Materials: Properties and Devices, pp. 413–434. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316681619.023

  3. Jing, Y., Zhang, X., Zhou, Z.: Phosphorene: what can we know from computations? WIREs Comput. Mol. Sci. 6(1), 5–19 (2016). https://doi.org/10.1002/wcms.1234

    Article  CAS  Google Scholar 

  4. Ghashghaee, M., Ghambarian, M.: Adsorption of toxic mercury, lead, cadmium, and arsenic ions on black phosphorous nanosheet: first-principles calculations. Struct. Chem. 30(1), 85–96 (2019). https://doi.org/10.1007/s11224-018-1173-6

    Article  CAS  Google Scholar 

  5. Greenwood, N.N., Earnshaw, A.: Chemistry of the Elements. Elsevier Science (2012)

    Google Scholar 

  6. Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C.: Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 118(25), 14051–14059 (2014). https://doi.org/10.1021/jp505257g

    Article  CAS  Google Scholar 

  7. Bridgman, P.W.: Two new modifications of phosphorus. J. Am. Chem. Soc. 36(7), 1344–1363 (1914). https://doi.org/10.1021/ja02184a002

    Article  CAS  Google Scholar 

  8. Lei, W., Liu, G., Zhang, J., Liu, M.: Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46(12), 3492–3509 (2017). https://doi.org/10.1039/c7cs00021a

    Article  CAS  Google Scholar 

  9. Keyes, R.W.: The electrical properties of black phosphorus. Phys. Rev. 92(3), 580–584 (1953). https://doi.org/10.1103/PhysRev.92.580

    Article  CAS  Google Scholar 

  10. Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z

    Article  CAS  Google Scholar 

  11. Favron, A., Gaufrès, E., Fossard, F., Phaneuf-L’Heureux, A.-L., Tang, N.Y.W., Lévesque, P.L., Loiseau, A., Leonelli, R., Francoeur, S., Martel, R.: Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826 (2015). https://doi.org/10.1038/nmat4299

    Article  CAS  Google Scholar 

  12. Liu, H., Du, Y., Deng, Y., Ye, P.D.: Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44(9), 2732–2743 (2015). https://doi.org/10.1039/c4cs00257a

    Article  CAS  Google Scholar 

  13. Feng, X., Kulish, V.V., Wu, P., Liu, X., Ang, K.-W.: Anomalously enhanced thermal stability of phosphorene via metal adatom doping: an experimental and first-principles study. Nano Res. 9(9), 2687–2695 (2016). https://doi.org/10.1007/s12274-016-1156-0

    Article  CAS  Google Scholar 

  14. Wood, J.D., Wells, S.A., Jariwala, D., Chen, K.-S., Cho, E., Sangwan, V.K., Liu, X., Lauhon, L.J., Marks, T.J., Hersam, M.C.: Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14(12), 6964–6970 (2014). https://doi.org/10.1021/nl5032293

    Article  CAS  Google Scholar 

  15. Zhu, H., McDonnell, S., Qin, X., Azcatl, A., Cheng, L., Addou, R., Kim, J., Ye, P.D., Wallace, R.M.: Al2O3 on black phosphorus by atomic layer deposition: an in situ interface study. ACS Appl. Mater. Interfaces 7(23), 13038–13043 (2015). https://doi.org/10.1021/acsami.5b03192

    Article  CAS  Google Scholar 

  16. Chen, Y., Ren, R., Pu, H., Chang, J., Mao, S., Chen, J.: Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 89, 505–510 (2017). https://doi.org/10.1016/j.bios.2016.03.059

    Article  CAS  Google Scholar 

  17. Cho, S.-Y., Koh, H.-J., Yoo, H.-W., Jung, H.-T.: Tunable chemical sensing performance of black phosphorus by controlled functionalization with noble metals. Chem. Mater. 29(17), 7197–7205 (2017). https://doi.org/10.1021/acs.chemmater.7b01353

    Article  CAS  Google Scholar 

  18. Guo, Z., Chen, S., Wang, Z., Yang, Z., Liu, F., Xu, Y., Wang, J., Yi, Y., Zhang, H., Liao, L., Chu, P.K., Yu, X.-F.: Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 29(42), 1703811 (2017). https://doi.org/10.1002/adma.201703811

    Article  CAS  Google Scholar 

  19. Zhao, Y., Wang, H., Huang, H., Xiao, Q., Xu, Y., Guo, Z., Xie, H., Shao, J., Sun, Z., Han, W., Yu, X.-F., Li, P., Chu, P.K.: Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. 55(16), 5003–5007 (2016). https://doi.org/10.1002/anie.201512038

    Article  CAS  Google Scholar 

  20. Zhang, L., Gao, L.-F., Li, L., Hu, C.-X., Yang, Q.-Q., Zhu, Z.-Y., Peng, R., Wang, Q., Peng, Y., Jin, J., Zhang, H.-L.: Negatively charged 2D black phosphorus for highly efficient covalent functionalization. Mater. Chem. Front. 2(9), 1700–1706 (2018). https://doi.org/10.1039/c8qm00237a

    Article  CAS  Google Scholar 

  21. Liu, Y., Gao, P., Zhang, T., Zhu, X., Zhang, M., Chen, M., Du, P., Wang, G.-W., Ji, H., Yang, J., Yang, S.: Azide passivation of black phosphorus nanosheets: covalent functionalization affords ambient stability enhancement. Angew. Chem. Int. Ed. 58(5), 1479–1483 (2019). https://doi.org/10.1002/anie.201813218

    Article  CAS  Google Scholar 

  22. van Druenen, M., Davitt, F., Collins, T., Glynn, C., O’Dwyer, C., Holmes, J.D., Collins, G.: Covalent functionalization of few-layer black phosphorus using iodonium salts and comparison to diazonium modified black phosphorus. Chem. Mater. 30(14), 4667–4674 (2018). https://doi.org/10.1021/acs.chemmater.8b01306

    Article  CAS  Google Scholar 

  23. Sun, Z., Xie, H., Tang, S., Yu, X.-F., Guo, Z., Shao, J., Zhang, H., Huang, H., Wang, H., Chu, P.K.: Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. 127(39), 11688–11692 (2015). https://doi.org/10.1002/ange.201506154

    Article  Google Scholar 

  24. Koenig, S.P., Doganov, R.A., Seixas, L., Carvalho, A., Tan, J.Y., Watanabe, K., Taniguchi, T., Yakovlev, N., Castro Neto, A.H., Özyilmaz, B.: Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 16(4), 2145–2151 (2016). https://doi.org/10.1021/acs.nanolett.5b03278

    Article  CAS  Google Scholar 

  25. Liu, Y., Cai, Y., Zhang, G., Zhang, Y.-W., Ang, K.-W.: Al-doped black phosphorus p–n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 27(7), 1604638 (2017). https://doi.org/10.1002/adfm.201604638

    Article  CAS  Google Scholar 

  26. Xiang, D., Han, C., Wu, J., Zhong, S., Liu, Y., Lin, J., Zhang, X.-A., Ping, HuW, Özyilmaz, B., Neto, A.H.C., Wee, A.T.S., Chen, W.: Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 6, 6485 (2015). https://doi.org/10.1038/ncomms7485

    Article  CAS  Google Scholar 

  27. Tang, X., Liang, W., Zhao, J., Li, Z., Qiu, M., Fan, T., Luo, C.S., Zhou, Y., Li, Y., Guo, Z., Fan, D., Zhang, H.: Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 13(47), 1702739 (2017). https://doi.org/10.1002/smll.201702739

    Article  CAS  Google Scholar 

  28. Xu, Y., Yuan, J., Fei, L., Wang, X., Bao, Q., Wang, Y., Zhang, K., Zhang, Y.: Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small 12(36), 5000–5007 (2016). https://doi.org/10.1002/smll.201600692

    Article  CAS  Google Scholar 

  29. Shao, J., Xie, H., Huang, H., Li, Z., Sun, Z., Xu, Y., Xiao, Q., Yu, X.-F., Zhao, Y., Zhang, H., Wang, H., Chu, P.K.: Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016). https://doi.org/10.1038/ncomms12967, https://www.nature.com/articles/ncomms12967#supplementary-information

  30. Zhang, Y., Sun, W., Luo, Z.-Z., Zheng, Y., Yu, Z., Zhang, D., Yang, J., Tan, H.T., Zhu, J., Wang, X., Yan, Q., Dou, S.X.: Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries. Nano Energy 40, 576–586 (2017). https://doi.org/10.1016/j.nanoen.2017.09.002

    Article  CAS  Google Scholar 

  31. Zhu, X., Zhang, T., Sun, Z., Chen, H., Guan, J., Chen, X., Ji, H., Du, P., Yang, S.: Black phosphorus revisited: a missing metal-free elemental photocatalyst for visible light hydrogen evolution. Adv. Mater. 29(17), 1605776 (2017). https://doi.org/10.1002/adma.201605776

    Article  CAS  Google Scholar 

  32. Shao, L., Sun, H., Miao, L., Chen, X., Han, M., Sun, J., Liu, S., Li, L., Cheng, F., Chen, J.: Facile preparation of NH2-functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 6(6), 2494–2499 (2018). https://doi.org/10.1039/c7ta10884b

    Article  CAS  Google Scholar 

  33. Zhu, X., Zhang, T., Jiang, D., Duan, H., Sun, Z., Zhang, M., Jin, H., Guan, R., Liu, Y., Chen, M., Ji, H., Du, P., Yan, W., Wei, S., Lu, Y., Yang, S.: Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules. Nat. Commun. 9(1), 4177 (2018). https://doi.org/10.1038/s41467-018-06437-1

    Article  CAS  Google Scholar 

  34. Xu, G.-L., Chen, Z., Zhong, G.-M., Liu, Y., Yang, Y., Ma, T., Ren, Y., Zuo, X., Wu, X.-H., Zhang, X., Amine, K.: Nanostructured black phosphorus/ketjenblack–multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 16(6), 3955–3965 (2016). https://doi.org/10.1021/acs.nanolett.6b01777

    Article  CAS  Google Scholar 

  35. Doganov, R.A., O’Farrell, E.C.T., Koenig, S.P., Yeo, Y., Ziletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Watanabe, K., Taniguchi, T., Neto, A.H.C., Özyilmaz, B.: Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun. 6, 6647 (2015). https://doi.org/10.1038/ncomms7647

    Article  CAS  Google Scholar 

  36. Du, Y., Yang, L., Zhou, H., Ye, P.D.: Performance enhancement of black phosphorus field-effect transistors by chemical doping. IEEE Electron Device Lett. 37(4), 429–432 (2016). https://doi.org/10.1109/led.2016.2535905

    Article  CAS  Google Scholar 

  37. Mu, H., Lin, S., Wang, Z., Xiao, S., Li, P., Chen, Y., Zhang, H., Bao, H., Lau, S.P., Pan, C., Fan, D., Bao, Q.: Black phosphorus-polymer composites for pulsed lasers. Adv. Opt. Mater. 3(10), 1447–1453 (2015). https://doi.org/10.1002/adom.201500336

    Article  CAS  Google Scholar 

  38. Kasap, S., Capper, P.: Springer Handbook of Electronic and Photonic Materials. Springer International Publishing (2017)

    Google Scholar 

  39. Sugahara, S., Takamura, Y., Shuto, Y., Yamamoto, S.: Field-effect spin-transistors. In: Xu, Y., Awschalom, D.D., Nitta, J. (eds.) Handbook of Spintronics, pp. 1243–1279. Springer Netherlands, Dordrecht (2016). https://doi.org/10.1007/978-94-007-6892-5_44

    Chapter  Google Scholar 

  40. Eswaraiah, V., Zeng, Q., Long, Y., Liu, Z.: Black phosphorus nanosheets: synthesis, characterization and applications. Small 12(26), 3480–3502 (2016). https://doi.org/10.1002/smll.201600032

    Article  CAS  Google Scholar 

  41. Sorkin, V., Cai, Y., Ong, Z., Zhang, G., Zhang, Y.W.: Recent advances in the study of phosphorene and its nanostructures. Crit. Rev. Solid State Mater. Sci. 42(1), 1–82 (2017). https://doi.org/10.1080/10408436.2016.1182469

    Article  CAS  Google Scholar 

  42. Akhtar, M., Anderson, G., Zhao, R., Alruqi, A., Mroczkowska, J.E., Sumanasekera, G., Jasinski, J.B.: Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Mater. Appl. 1(1), 5 (2017). https://doi.org/10.1038/s41699-017-0007-5

  43. Qiao, H., Wei, Q.: Functional nanofibers in lithium-ion batteries. In: Wei, Q. (ed.) Functional Nanofibers and their Applications, pp. 197–208. Woodhead Publishing (2012). https://doi.org/10.1533/9780857095640.2.197

    Chapter  Google Scholar 

  44. Khandelwal, A., Mani, K., Karigerasi, M.H., Lahiri, I.: Phosphorene—the two-dimensional black phosphorous: properties, synthesis and applications. Mater. Sci. Eng.: B 221(Supplement C), 17–34 (2017). https://doi.org/10.1016/j.mseb.2017.03.011

    Article  CAS  Google Scholar 

  45. McCann, J., Bryson, D.: Smart Clothes and Wearable Technology. Elsevier Science (2009)

    Google Scholar 

  46. Kakaei, K., Esrafili, M.D., Ehsani, A.: Introduction to catalysis. In: Kakaei, K., Esrafili, M.D., Ehsani, A. (eds.) Interface Science and Technology, vol. 27, pp. 1–21. Elsevier (2019). https://doi.org/10.1016/B978-0-12-814523-4.00001-0

    Google Scholar 

  47. Makhlouf, A.S.H., Tiginyanu, I.: Nanocoatings and Ultra-Thin Films: Technologies and Applications. Elsevier Science (2011)

    Google Scholar 

  48. Peixoto, A.C., Silva, A.F.: Smart devices: micro- and nanosensors. In: Rodrigues, L., Mota, M. (eds.) Bioinspired Materials for Medical Applications, pp. 297–329. Woodhead Publishing (2017). https://doi.org/10.1016/B978-0-08-100741-9.00011-5

    Chapter  Google Scholar 

  49. Choi, J.R., Yong, K.W., Choi, J.Y., Nilghaz, A., Lin, Y., Xu, J., Lu, X.: Black phosphorus and its biomedical applications. Theranostics 8(4), 1005–1026 (2018). https://doi.org/10.7150/thno.22573

    Article  CAS  Google Scholar 

  50. İşmal, Ö.E., Paul, R.: Composite textiles in high-performance apparel. In: McLoughlin, J., Sabir, T. (eds.) High-Performance Apparel, pp. 377–420. Woodhead Publishing (2018). https://doi.org/10.1016/B978-0-08-100904-8.00019-5

    Chapter  Google Scholar 

  51. Sawant, S.N.: Development of biosensors from biopolymer composites. In: Sadasivuni, K.K., Ponnamma, D., Kim, J., Cabibihan, J.J., AlMaadeed, M.A. (eds.) Biopolymer composites in electronics, pp. 353–383. Elsevier (2017). https://doi.org/10.1016/B978-0-12-809261-3.00013-9

    Chapter  Google Scholar 

  52. Bhagyaraj, S.M., Oluwafemi, O.S., Kalarikkal, N., Thomas, S.: Applications of Nanomaterials: Advances and Key Technologies. Elsevier Science (2018)

    Google Scholar 

  53. Jothi, L., Nageswaran, G.: Plasma modified polymeric materials for biosensors/biodevice applications. In: Thomas, S., Mozetič, M., Cvelbar, U., Špatenka, P., Praveen, K.M. (eds.) Non-Thermal Plasma Technology for Polymeric Materials, pp. 409–437. Elsevier (2019). https://doi.org/10.1016/B978-0-12-813152-7.00015-9

    Chapter  Google Scholar 

  54. VanEngelenburg, S.B., Palmer, A.E.: Fluorescent biosensors of protein function. Curr. Opin. Chem. Biol. 12(1), 60–65 (2008). https://doi.org/10.1016/j.cbpa.2008.01.020

    Article  CAS  Google Scholar 

  55. Hirsch, A., Hauke, F.: Post-Graphene 2D chemistry: the emerging field of molybdenum disulfide and black phosphorus functionalization. Angew. Chem. Int. Ed. 57(16), 4338–4354 (2018). https://doi.org/10.1002/anie.201708211

    Article  CAS  Google Scholar 

  56. Ling, X., Wang, H., Huang, S., Xia, F., Dresselhaus, M.S.: The renaissance of black phosphorus. Proc. Natl. Acad. Sci. 112(15), 4523 (2015). https://doi.org/10.1073/pnas.1416581112

    Article  CAS  Google Scholar 

  57. Ryder, C.R., Wood, J.D., Wells, S.A., Hersam, M.C.: Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano 10(4), 3900–3917 (2016). https://doi.org/10.1021/acsnano.6b01091

    Article  Google Scholar 

  58. Ryder, C.R., Wood, J.D., Wells, S.A., Yang, Y., Jariwala, D., Marks, T.J., Schatz, G.C., Hersam, M.C.: Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8, 597 (2016). https://doi.org/10.1038/nchem.2505

    Article  CAS  Google Scholar 

  59. Boukhvalov, D.W., Rudenko, A.N., Prishchenko, D.A., Mazurenko, V.G., Katsnelson, M.I.: Chemical modifications and stability of phosphorene with impurities: a first principles study. Phys. Chem. Chem. Phys. 17(23), 15209–15217 (2015). https://doi.org/10.1039/c5cp01901j

    Article  CAS  Google Scholar 

  60. Drissi, L.B., Sadki, S., Sadki, K.: Half-oxidized phosphorene: band gap and elastic properties modulation. J. Phys.: Condens. Matter 28(14), 145501 (2016). https://doi.org/10.1088/0953-8984/28/14/145501

    Article  CAS  Google Scholar 

  61. Wang, G., Pandey, R., Karna, S.P.: Phosphorene oxide: stability and electronic properties of a novel two-dimensional material. Nanoscale 7(2), 524–531 (2015). https://doi.org/10.1039/c4nr05384b

    Article  CAS  Google Scholar 

  62. Dai, J., Zeng, X.C.: Structure and stability of two dimensional phosphorene with =O or =NH functionalization. RSC Adv. 4(89), 48017–48021 (2014). https://doi.org/10.1039/c4ra02850c

    Article  CAS  Google Scholar 

  63. Kistanov, A.A., Cai, Y., Zhou, K., Dmitriev, S.V., Zhang, Y.-W.: The role of H2O and O2 molecules and phosphorus vacancies in the structure instability of phosphorene. 2D Mater. 4(1), 015010 (2016). https://doi.org/10.1088/2053-1583/4/1/015010

    Article  Google Scholar 

  64. Cai, Y., Ke, Q., Zhang, G., Zhang, Y.-W.: Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene. J. Phys. Chem. C 119(6), 3102–3110 (2015). https://doi.org/10.1021/jp510863p

    Article  CAS  Google Scholar 

  65. Sadki, S., Drissi, L.B.: Tunable optical and excitonic properties of phosphorene via oxidation. J. Phys.: Condens. Matter 30(25), 255703 (2018). https://doi.org/10.1088/1361-648x/aac403

    Article  CAS  Google Scholar 

  66. Çakır, D., Sahin, H., Peeters, F.M.: Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B 90(20), 205421 (2014)

    Article  Google Scholar 

  67. Ienco, A., Manca, G., Peruzzini, M., Mealli, C.: Modelling strategies for the covalent functionalization of 2D phosphorene. Dalton Trans. 47(48), 17243–17256 (2018). https://doi.org/10.1039/c8dt03628d

    Article  CAS  Google Scholar 

  68. Scotognella, F., Kriegel, I., Sassolini, S.: Covalent functionalized black phosphorus quantum dots. Opt. Mater. 75, 521–524 (2018). https://doi.org/10.1016/j.optmat.2017.11.016

    Article  CAS  Google Scholar 

  69. Sofer, Z., Luxa, J., Bouša, D., Sedmidubský, D., Lazar, P., Hartman, T., Hardtdegen, H., Pumera, M.: The covalent functionalization of layered black phosphorus. Angew. Chem. Int. Ed. 56(33), 9891–9896 (2017). https://doi.org/10.1002/anie.201705722

    Article  CAS  Google Scholar 

  70. Li, Q., Zhou, Q., Niu, X., Zhao, Y., Chen, Q., Wang, J.: Covalent functionalization of black phosphorus from first-principles. J Phys. Chem. Lett. 7(22), 4540–4546 (2016). https://doi.org/10.1021/acs.jpclett.6b02192

    Article  CAS  Google Scholar 

  71. Abellán, G., Lloret, V., Mundloch, U., Marcia, M., Neiss, C., Görling, A., Varela, M., Hauke, F., Hirsch, A.: Noncovalent functionalization of black phosphorus. Angew. Chem. Int. Ed. 55(47), 14557–14562 (2016). https://doi.org/10.1002/anie.201604784

    Article  CAS  Google Scholar 

  72. Lee, M., Park, Y.H., Kang, E.B., Chae, A., Choi, Y., Jo, S., Kim, Y.J., Park, S.-J., Min, B., An, T.K., Lee, J., In, S.-I., Kim, S.Y., Park, S.Y., In, I.: Highly efficient visible blue-emitting black phosphorus quantum dot: mussel-inspired surface functionalization for bioapplications. ACS Omega 2(10), 7096–7105 (2017). https://doi.org/10.1021/acsomega.7b01058

    Article  CAS  Google Scholar 

  73. Li, Y., Liu, Z., Hou, Y., Yang, G., Fei, X., Zhao, H., Guo, Y., Su, C., Wang, Z., Zhong, H., Zhuang, Z., Guo, Z.: Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy. ACS Appl. Mater. Interfaces 9(30), 25098–25106 (2017). https://doi.org/10.1021/acsami.7b05824

    Article  CAS  Google Scholar 

  74. Hu, H., Gao, H., Gao, L., Li, F., Xu, N., Long, X., Hu, Y., Jin, J., Ma, J.: Covalent functionalization of black phosphorus nanoflakes by carbon free radicals for durable air and water stability. Nanoscale 10(13), 5834–5839 (2018). https://doi.org/10.1039/c7nr06085h

    Article  CAS  Google Scholar 

  75. Artel, V., Guo, Q., Cohen, H., Gasper, R., Ramasubramaniam, A., Xia, F., Naveh, D.: Protective molecular passivation of black phosphorus. npj 2D Mater. Appl. 1(1), 6 (2017). https://doi.org/10.1038/s41699-017-0004-8

  76. Feng, Q., Liu, H., Zhu, M., Shang, J., Liu, D., Cui, X., Shen, D., Kou, L., Mao, D., Zheng, J., Li, C., Zhang, J., Xu, H., Zhao, J.: Electrostatic functionalization and passivation of water-exfoliated few-layer black phosphorus by poly dimethyldiallyl ammonium chloride and its ultrafast laser application. ACS Appl. Mater. Interfaces 10(11), 9679–9687 (2018). https://doi.org/10.1021/acsami.8b00556

    Article  CAS  Google Scholar 

  77. Yu, X., Zhang, S., Zeng, H., Wang, Q.J.: Lateral black phosphorene P-N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy 25, 34–41 (2016). https://doi.org/10.1016/j.nanoen.2016.04.030

    Article  CAS  Google Scholar 

  78. Zhang, R., Li, B., Yang, J.: A first-principles study on electron donor and acceptor molecules adsorbed on phosphorene. J. Phys. Chem. C 119(5), 2871–2878 (2015). https://doi.org/10.1021/jp5116564

    Article  CAS  Google Scholar 

  79. Jing, Y., Tang, Q., He, P., Zhou, Z., Shen, P.: Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene. Nanotechnology 26(9), 095201 (2015). https://doi.org/10.1088/0957-4484/26/9/095201

    Article  CAS  Google Scholar 

  80. Cao, Y., Tian, X., Gu, J., Liu, B., Zhang, B., Song, S., Fan, F., Chen, Y.: Covalent functionalization of black phosphorus with conjugated polymer for information storage. Angew. Chem. Int. Ed. 57(17), 4543–4548 (2018). https://doi.org/10.1002/anie.201712675

    Article  CAS  Google Scholar 

  81. Kulish, V.V., Malyi, O.I., Persson, C., Wu, P.: Adsorption of metal adatoms on single-layer phosphorene. Phys. Chem. Chem. Phys. 17(2), 992–1000 (2015). https://doi.org/10.1039/c4cp03890h

    Article  CAS  Google Scholar 

  82. Lei, S.Y., Yu, Z.Y., Shen, H.Y., Sun, X.L., Wan, N., Yu, H.: CO adsorption on metal-decorated phosphorene. ACS Omega 3(4), 3957–3965 (2018). https://doi.org/10.1021/acsomega.8b00133

    Article  CAS  Google Scholar 

  83. Sun, H., Shang, Y., Yang, Y., Guo, M.: Realization of N-Type semiconducting of phosphorene through surface metal doping and work function study. J. Nanomater. 2018, 9 (2018). https://doi.org/10.1155/2018/6863890

    Article  CAS  Google Scholar 

  84. Rastogi, P., Kumar, S., Bhowmick, S., Agarwal, A., Chauhan, Y.S.: Effective doping of monolayer phosphorene by surface adsorption of atoms for electronic and spintronic applications. IETE J. Res. 63(2), 205–215 (2017). https://doi.org/10.1080/03772063.2016.1243020

    Article  Google Scholar 

  85. Zhu, H., Zhou, C., Wang, X., Chen, X., Yang, W., Wu, Y., Lin, W.: Doping behaviors of adatoms adsorbed on phosphorene. Phys. Status Solidi B 253(6), 1156–1166 (2016). https://doi.org/10.1002/pssb.201552586

    Article  CAS  Google Scholar 

  86. Ding, Y., Wang, Y.: Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: a first-principles Study. J. Phys. Chem. C 119(19), 10610–10622 (2015). https://doi.org/10.1021/jp5114152

    Article  CAS  Google Scholar 

  87. Zhiyuan, Y., Shuangying, L., Neng, W., Shan, L., Haiyun, S., Hong, Y.: Effect of metal adatoms on hydrogen adsorption properties of phosphorene. Mater. Res. Express 4(4), 045503 (2017). https://doi.org/10.1088/2053-1591/aa6ac0

    Article  CAS  Google Scholar 

  88. Hu, T., Hong, J.: First-principles study of metal adatom adsorption on black phosphorene. J. Phys. Chem. C 119(15), 8199–8207 (2015). https://doi.org/10.1021/acs.jpcc.5b01300

    Article  CAS  Google Scholar 

  89. Musle, V., Choudhary, S.: Tuning the optical properties of phosphorene by adsorption of alkali metals and halogens. Opt. Quant. Electron. 50(7), 285 (2018). https://doi.org/10.1007/s11082-018-1548-3

    Article  CAS  Google Scholar 

  90. Kuang, A., Kuang, M., Yuan, H., Wang, G., Chen, H., Yang, X.: Acidic gases (CO2, NO2 and SO2) capture and dissociation on metal decorated phosphorene. Appl. Surf. Sci. 410(Supplement C), 505–512 (2017). https://doi.org/10.1016/j.apsusc.2017.03.135

    Article  CAS  Google Scholar 

  91. Huang, G.Q., Xing, Z.W., Xing, D.Y.: Prediction of superconductivity in Li-intercalated bilayer phosphorene. Appl. Phys. Lett. 106(11), 113107 (2015). https://doi.org/10.1063/1.4916100

    Article  CAS  Google Scholar 

  92. Han, C., Hu, Z., Gomes, L.C., Bao, Y., Carvalho, A., Tan, S.J.R., Lei, B., Xiang, D., Wu, J., Qi, D., Wang, L., Huo, F., Huang, W., Loh, K.P., Chen, W.: Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett. 17(7), 4122–4129 (2017). https://doi.org/10.1021/acs.nanolett.7b00903

    Article  CAS  Google Scholar 

  93. Zhang, H.-p., Hu, W., Du, A., Lu, X., Zhang, Y.-p., Zhou, J., Lin, X., Tang, Y.: Doped phosphorene for hydrogen capture: a DFT study. Appl. Surf. Sci. 433(Supplement C), 249–255 (2018). https://doi.org/10.1016/j.apsusc.2017.09.243

    Article  CAS  Google Scholar 

  94. Lalitha, M., Nataraj, Y., Lakshmipathi, S.: Calcium decorated and doped phosphorene for gas adsorption. Appl. Surf. Sci. 377(Supplement C), 311–323 (2016). https://doi.org/10.1016/j.apsusc.2016.03.119

    Article  CAS  Google Scholar 

  95. Zhang, H.-p., Du, A., Shi, Q.-b., Zhou, Y., Zhang, Y., Tang, Y.: Adsorption behavior of CO2 on pristine and doped phosphorenes: a dispersion corrected DFT study. J. CO2 Utilization 24, 463–470 (2018). https://doi.org/10.1016/j.jcou.2018.02.005

    Article  CAS  Google Scholar 

  96. Pan, Y., Wang, Y., Ye, M., Quhe, R., Zhong, H., Song, Z., Peng, X., Yu, D., Yang, J., Shi, J., Lu, J.: Monolayer phosphorene-metal contacts. Chem. Mater. 28(7), 2100–2109 (2016). https://doi.org/10.1021/acs.chemmater.5b04899

    Article  CAS  Google Scholar 

  97. Zhang, X., Pan, Y., Ye, M., Quhe, R., Wang, Y., Guo, Y., Zhang, H., Dan, Y., Song, Z., Li, J., Yang, J., Guo, W., Lu, J.: Three-layer phosphorene-metal interfaces. Nano Res. 11(2), 707–721 (2018). https://doi.org/10.1007/s12274-017-1680-6

    Article  CAS  Google Scholar 

  98. Luo, Y., Ren, C., Wang, S., Li, S., Zhang, P., Yu, J., Sun, M., Sun, Z., Tang, W.: Adsorption of transition metals on black phosphorene: a first-principles study. Nanoscale Res. Lett. 13(1), 282 (2018). https://doi.org/10.1186/s11671-018-2696-x

    Article  CAS  Google Scholar 

  99. Zhang, Y., Dong, N., Tao, H., Yan, C., Huang, J., Liu, T., Robertson, A.W., Texter, J., Wang, J., Sun, Z.: Exfoliation of stable 2D black phosphorus for device fabrication. Chem. Mater. 29(15), 6445–6456 (2017). https://doi.org/10.1021/acs.chemmater.7b01991

    Article  CAS  Google Scholar 

  100. Kuang, A., Ran, Y., Peng, B., Kuang, M., Wang, G., Yuan, H., Tian, C., Chen, H.: Adsorption and decomposition of metal decorated phosphorene toward H2S, HCN and NH3 molecules. Appl. Surf. Sci. 473, 242–250 (2019). https://doi.org/10.1016/j.apsusc.2018.12.131

    Article  CAS  Google Scholar 

  101. Lee, G., Jung, S., Jang, S., Kim, J.: Platinum-functionalized black phosphorus hydrogen sensors. Appl. Phys. Lett. 110(24), 242103 (2017). https://doi.org/10.1063/1.4985708

    Article  CAS  Google Scholar 

  102. Caporali, M., Serrano-Ruiz, M., Telesio, F., Heun, S., Nicotra, G., Spinella, C., Peruzzini, M.: Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. Chem. Commun. 53(79), 10946–10949 (2017). https://doi.org/10.1039/c7cc05906j

    Article  CAS  Google Scholar 

  103. Hu, Z., Li, Q., Lei, B., Wu, J., Zhou, Q., Gu, C., Wen, X., Wang, J., Liu, Y., Li, S., Zheng, Y., Lu, J., He, J., Wang, L., Xiong, Q., Wang, J., Chen, W.: Abnormal near-infrared absorption in 2D black phosphorus induced by Ag nanoclusters surface functionalization. Adv. Mater. 30(43), 1801931 (2018). https://doi.org/10.1002/adma.201801931

    Article  CAS  Google Scholar 

  104. Prakash, A., Cai, Y., Zhang, G., Zhang, Y.-W., Ang, K.-W.: Black phosphorus N-Type field-effect transistor with ultrahigh electron mobility via aluminum adatoms doping. Small 13(5), 1602909 (2017). https://doi.org/10.1002/smll.201602909

    Article  CAS  Google Scholar 

  105. Yang, B., Wan, B., Zhou, Q., Wang, Y., Hu, W., Lv, W., Chen, Q., Zeng, Z., Wen, F., Xiang, J., Yuan, S., Wang, J., Zhang, B., Wang, W., Zhang, J., Xu, B., Zhao, Z., Tian, Y., Liu, Z.: Te-doped black phosphorus field-effect transistors. Adv. Mater. 28(42), 9408–9415 (2016). https://doi.org/10.1002/adma.201603723

    Article  CAS  Google Scholar 

  106. Nahas, S., Ghosh, B., Bhowmick, S., Agarwal, A.: First-principles cluster expansion study of functionalization of black phosphorene via fluorination and oxidation. Phys. Rev. B 93(16), 165413 (2016). https://doi.org/10.1103/PhysRevB.93.165413

    Article  CAS  Google Scholar 

  107. Yang, Q., Xiong, W., Zhu, L., Gao, G., Wu, M.: Chemically functionalized phosphorene: two-dimensional multiferroics with vertical polarization and mobile magnetism. J. Am. Chem. Soc. 139(33), 11506–11512 (2017). https://doi.org/10.1021/jacs.7b04422

    Article  CAS  Google Scholar 

  108. Zheng, H., Zhang, J., Yang, B., Du, X., Yan, Y.: A first-principles study on the magnetic properties of nonmetal atom doped phosphorene monolayers. Phys. Chem. Chem. Phys. 17(25), 16341–16350 (2015). https://doi.org/10.1039/c5cp00916b

    Article  CAS  Google Scholar 

  109. Ehlen, N., Senkovskiy, B.V., Fedorov, A.V., Perucchi, A., Di Pietro, P., Sanna, A., Profeta, G., Petaccia, L., Grüneis, A.: Evolution of electronic structure of few-layer phosphorene from angle-resolved photoemission spectroscopy of black phosphorous. Phys. Rev. B 94(24), 245410 (2016). https://doi.org/10.1103/PhysRevB.94.245410

    Article  Google Scholar 

  110. Suvansinpan, N., Hussain, F., Zhang, G., Chiu, C.H., Cai, Y., Zhang, Y.-W.: Substitutionally doped phosphorene: electronic properties and gas sensing. Nanotechnology 27(6), 065708 (2016). https://doi.org/10.1088/0957-4484/27/6/065708

    Article  CAS  Google Scholar 

  111. Sanna, A., Fedorov, A.V., Verbitskiy, N.I., Fink, J., Krellner, C., Petaccia, L., Chikina, A., Usachov, D.Y., Grüneis, A., Profeta, G.: First-principles and angle-resolved photoemission study of lithium doped metallic black phosphorous. 2D Materials 3(2), 025031 (2016). https://doi.org/10.1088/2053-1583/3/2/025031

    Article  Google Scholar 

  112. Sun, X., Luan, S., Shen, H., Lei, S.: Effect of metal doping on carbon monoxide adsorption on phosphorene: a first-principles study. Superlattices Microstruct. 124, 168–175 (2018). https://doi.org/10.1016/j.spmi.2018.09.037

    Article  CAS  Google Scholar 

  113. Zhang, H-p, Hou, J-l, Wang, Y., Tang, P-p, Zhang, Y-p, Lin, X-y, Liu, C., Tang, Y.: Adsorption behavior of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on pristine and doped black phosphorene: a DFT study. Chemosphere 185, 509–517 (2017). https://doi.org/10.1016/j.chemosphere.2017.06.120

    Article  CAS  Google Scholar 

  114. Babar, R., Kabir, M.: Transition metal and vacancy defect complexes in phosphorene: a spintronic perspective. J. Phys. Chem. C 120(27), 14991–15000 (2016). https://doi.org/10.1021/acs.jpcc.6b05069

    Article  CAS  Google Scholar 

  115. Wang, Y., Pham, A., Li, S., Yi, J.: Electronic and magnetic properties of transition-metal-doped monolayer black phosphorus by defect engineering. J. Phys. Chem. C 120(18), 9773–9779 (2016). https://doi.org/10.1021/acs.jpcc.6b00981

    Article  CAS  Google Scholar 

  116. Yu, W., Zhu, Z., Niu, C.-Y., Li, C., Cho, J.-H., Jia, Y.: Dilute magnetic semiconductor and half-metal behaviors in 3d transition-metal doped black and blue phosphorenes: a first-principles study. Nanoscale Res. Lett. 11(1), 77 (2016). https://doi.org/10.1186/s11671-016-1296-x

    Article  CAS  Google Scholar 

  117. Zhai, C., Dai, X., Li, W., Ma, Y., Wang, T., Tang, Y.: Strain tuning of magnetism in transition-metal atom doped phosphorene. Superlattices Microstruct. 101(Supplement C), 49–56 (2017). https://doi.org/10.1016/j.spmi.2016.10.090

    Article  CAS  Google Scholar 

  118. Yuan, Z., Li, N.: Manipulating the magnetic moment in phosphorene by lanthanide atom doping: a first-principle study. RSC Adv. 6(94), 92048–92056 (2016). https://doi.org/10.1039/c6ra14546a

    Article  CAS  Google Scholar 

  119. Luan, Z., Zhao, L., Chang, H., Sun, D., Tan, C., Huang, Y.: First-principles study on electronic structures and magnetic properties of Eu-doped phosphorene. Superlattices Microstruct. 111(Supplement C), 816–823 (2017). https://doi.org/10.1016/j.spmi.2017.07.039

    Article  CAS  Google Scholar 

  120. Hashmi, A., Hong, J.: Transition metal doped phosphorene: first-principles study. J. Phys. Chem. C 119(17), 9198–9204 (2015). https://doi.org/10.1021/jp511574n

    Article  CAS  Google Scholar 

  121. Arabieh, M., Azar, Y.T.: In silico insight into ammonia adsorption on pristine and X-doped phosphorene (X=B, C, N, O, Si, and Ni). Appl. Surf. Sci. 396(Supplement C), 1411–1419 (2017). https://doi.org/10.1016/j.apsusc.2016.11.175

    Article  CAS  Google Scholar 

  122. Wei, Z., Zhang, Y., Wang, S., Wang, C., Ma, J.: Fe-doped phosphorene for the nitrogen reduction reaction. J. Mater. Chem. A 6(28), 13790–13796 (2018). https://doi.org/10.1039/c8ta03989e

    Article  CAS  Google Scholar 

  123. Seixas, L., Carvalho, A., Castro Neto, A.H.: Atomically thin dilute magnetism in Co-doped phosphorene. Phys. Rev. B 91(15), 155138 (2015). https://doi.org/10.1103/PhysRevB.91.155138

    Article  CAS  Google Scholar 

  124. Qi-Hang, Y., Yong, J., Wei, Z., Bo-Zhao, W., Jiu-Ren, Y., Ping, Z., Yan-Huai, D.: Noble metal atoms doped phosphorene: electronic properties and gas adsorption ability. Mater. Res. Express 4(4), 045703 (2017)

    Article  Google Scholar 

  125. Yu, W., Zhu, Z., Niu, C.-Y., Li, C., Cho, J.-H., Jia, Y.: Anomalous doping effect in black phosphorene using first-principles calculations. Phys. Chem. Chem. Phys. 17(25), 16351–16358 (2015). https://doi.org/10.1039/c5cp01732g

    Article  CAS  Google Scholar 

  126. Boukhvalov, D.W.: The atomic and electronic structure of nitrogen- and boron-doped phosphorene. Phys. Chem. Chem. Phys. 17(40), 27210–27216 (2015). https://doi.org/10.1039/c5cp05071e

    Article  CAS  Google Scholar 

  127. Yang, L., Mi, W., Wang, X.: Tailoring magnetism of black phosphorene doped with B, C, N, O, F, S and Se atom: a DFT calculation. J. Alloys Compounds 662(Supplement C), 528–533 (2016). https://doi.org/10.1016/j.jallcom.2015.12.095

    Article  CAS  Google Scholar 

  128. Khan, I., Hong, J.: Manipulation of magnetic state in phosphorene layer by non-magnetic impurity doping. New J. Phys. 17(2), 023056 (2015). https://doi.org/10.1088/1367-2630/17/2/023056

    Article  CAS  Google Scholar 

  129. Guo, C., Xia, C., Fang, L., Wang, T., Liu, Y.: Tuning anisotropic electronic transport properties of phosphorene via substitutional doping. Phys. Chem. Chem. Phys. 18(37), 25869–25878 (2016). https://doi.org/10.1039/c6cp04508a

    Article  CAS  Google Scholar 

  130. Yang, Q., Meng, R.S., Jiang, J.K., Liang, Q.H., Tan, C.J., Cai, M., Sun, X., Yang, D.G., Ren, T.L., Chen, X.P.: First-principles study of sulfur dioxide sensor based on phosphorenes. IEEE Electron Dev. Lett. 37(5), 660–662 (2016). https://doi.org/10.1109/led.2016.2543243

    Article  CAS  Google Scholar 

  131. Zhao, J., Liu, X., Chen, Z.: Frustrated lewis pair catalysts in two dimensions: B/Al-doped phosphorenes as promising catalysts for hydrogenation of small unsaturated molecules. ACS Catal. 7(1), 766–771 (2017). https://doi.org/10.1021/acscatal.6b02727

    Article  CAS  Google Scholar 

  132. Liu, D., Shi, Y., Tao, L., Yan, D., Chen, R., Wang, S.: First-principles study of methanol adsorption on heteroatom-doped phosphorene. Chin. Chem. Lett. 30(1), 207–210 (2019). https://doi.org/10.1016/j.cclet.2018.01.041

    Article  CAS  Google Scholar 

  133. Wu, Z.-F., Gao, P.-F., Guo, L., Kang, J., Fang, D.-Q., Zhang, Y., Xia, M.-G., Zhang, S.-L., Wen, Y.-H.: Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene. Phys. Chem. Chem. Phys. 19(47), 31796–31803 (2017). https://doi.org/10.1039/c7cp05404a

    Article  CAS  Google Scholar 

  134. Kong, L.-J., Liu, G.-H., Zhang, Y.-J.: Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping. RSC Adv. 6(13), 10919–10929 (2016). https://doi.org/10.1039/c5ra22004a

    Article  CAS  Google Scholar 

  135. Guo, C., Wang, T., Xia, C., Liu, Y.: Modulation of electronic transport properties in armchair phosphorene nanoribbons by doping and edge passivation. Sci. Rep. 7(1), 12799 (2017). https://doi.org/10.1038/s41598-017-13212-7

    Article  CAS  Google Scholar 

  136. Nasria, A.H.A.: Electronic properties of phosphorene nanoribbons doped with boron, aluminum and carbon. J. Chem. Pharm. Sci. 10(2), 935–939 (2017)

    Google Scholar 

  137. Guo, Y., Robertson, J.: Vacancy and doping states in monolayer and bulk black phosphorus. Sci. Rep. 5, 14165 (2015). https://doi.org/10.1038/srep14165

    Article  CAS  Google Scholar 

  138. Zhu, Z.-L., Yu, W.-Y., Ren, X.-Y., Sun, Q., Jia, Y.: Grain boundary in phosphorene and its unique roles on C and O doping. EPL (Europhys. Lett.) 109(4), 47003 (2015). https://doi.org/10.1209/0295-5075/109/47003

    Article  CAS  Google Scholar 

  139. Ghambarian, M., Ghashghaee, M., Azizi, Z., Balar, M.: Molecular interactions of MeOH and EtOH with black phosphorus monolayer: a periodic density functional study. Phys. Chem. Res. 7(2), 435–447 (2019). https://doi.org/10.22036/pcr.2019.172026.1594

    Article  Google Scholar 

  140. Xie, Y., Zhang, L., Zhu, Y., Liu, L., Guo, H.: Photogalvanic effect in monolayer black phosphorus. Nanotechnology 26(45), 455202 (2015). https://doi.org/10.1088/0957-4484/26/45/455202

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ghashghaee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghambarian, M., Azizi, Z., Ghashghaee, M. (2020). Functionalization and Doping of Black Phosphorus. In: Inamuddin, Boddula, R., Asiri, A. (eds) Black Phosphorus. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29555-4_1

Download citation

Publish with us

Policies and ethics