Advertisement

Functionalization and Doping of Black Phosphorus

  • Mehdi Ghambarian
  • Zahra Azizi
  • Mohammad GhashghaeeEmail author
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Black phosphorus (BP), a new rising star in the post-graphene era, has been extensively studied from early 2014 onward. To take full advantage of its potential, much research is rapidly generated on the modification of BP-based nanostructures via functionalization, decoration, and doping. The fast-growing research in this area has led to significant trends in the fast-evolving field of 2D nanomaterials over a wide range of applications including field effect transistors, diodes, phonon detectors, biomedicine, digital circuits, sodium- and lithium-ion batteries, sensors, photocatalysis, electrocatalysis, thermoelectric materials, memory devices, and so forth. This chapter is aimed to present a state-of-the-art overview of the advancements of the field through the modifications mentioned above from both theoretical and experimental points of view.

Abbreviations

2D

Two-dimensional

3D

Three-dimensional

AFM

Atomic force microscopy

AIBN

Azodiisobutyronitrile

ALD

Atomic layer deposition

BCS

Bardeen–Cooper–Schrieffer

BP

Black phosphorus

BPQD

BP quantum dot

DCD

Differential charge density

DFT

Density functional theory

DMS

Dilute magnetic semiconductor

DV

Divacancy

ESE

Emulsion solvent evaporation

F4-TCNQ

Tetrafluoro tetracyanoquinodimethane

FET

Field effect transistor

GGA

Generalized gradient approximation

IR

Infrared

LDOS

Local density of states

MD

Molecular dynamics

MGPT

Mineralizer-assisted gas-phase transformation

MV

Monovacancy

NDR

Negative differential resistance

NIR

Near-infrared

NVM

Nonvolatile memory

PA

Photoacoustic

PBC

Periodic boundary conditions

PDDA

Poly dimethyldiallyl ammonium chloride

PEG

Polyethylene glycol

PGE

Photogalvanic effect

PLGA

Poly(lactic-co-glycolic acid)

PVR

Peak-to-valley ratio

RP

Red phosphorus

SPR

Surface plasmon resonance

TCDD

Tetrachlorodibenzo-p-dioxin

TCNQ

Tetracyano-p-quinodimethane

TEM

Transmission electron microscopy

TM

Transition metal

TMD

Transition metal dichalcogenide

TTF

Tetrathiafulvalene

VBM

Valence band maximum

VD

Vacuum deposition

vdW

van der Waals

WI

Wet impregnation

WP

White phosphorus

References

  1. 1.
    Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., Castro Neto, A.H.: Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016).  https://doi.org/10.1038/natrevmats.2016.61CrossRefGoogle Scholar
  2. 2.
    Du, Y., Luo, Z., Liu, H., Xu, X., Ye, P.D.: Anisotropic properties of black phosphorus. In: Avouris, P., Low, T., Heinz, T.F. (eds.) 2D Materials: Properties and Devices, pp. 413–434. Cambridge University Press, Cambridge (2017).  https://doi.org/10.1017/9781316681619.023
  3. 3.
    Jing, Y., Zhang, X., Zhou, Z.: Phosphorene: what can we know from computations? WIREs Comput. Mol. Sci. 6(1), 5–19 (2016).  https://doi.org/10.1002/wcms.1234CrossRefGoogle Scholar
  4. 4.
    Ghashghaee, M., Ghambarian, M.: Adsorption of toxic mercury, lead, cadmium, and arsenic ions on black phosphorous nanosheet: first-principles calculations. Struct. Chem. 30(1), 85–96 (2019).  https://doi.org/10.1007/s11224-018-1173-6CrossRefGoogle Scholar
  5. 5.
    Greenwood, N.N., Earnshaw, A.: Chemistry of the Elements. Elsevier Science (2012)Google Scholar
  6. 6.
    Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C.: Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 118(25), 14051–14059 (2014).  https://doi.org/10.1021/jp505257gCrossRefGoogle Scholar
  7. 7.
    Bridgman, P.W.: Two new modifications of phosphorus. J. Am. Chem. Soc. 36(7), 1344–1363 (1914).  https://doi.org/10.1021/ja02184a002CrossRefGoogle Scholar
  8. 8.
    Lei, W., Liu, G., Zhang, J., Liu, M.: Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46(12), 3492–3509 (2017).  https://doi.org/10.1039/c7cs00021aCrossRefGoogle Scholar
  9. 9.
    Keyes, R.W.: The electrical properties of black phosphorus. Phys. Rev. 92(3), 580–584 (1953).  https://doi.org/10.1103/PhysRev.92.580CrossRefGoogle Scholar
  10. 10.
    Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014).  https://doi.org/10.1021/nn501226zCrossRefGoogle Scholar
  11. 11.
    Favron, A., Gaufrès, E., Fossard, F., Phaneuf-L’Heureux, A.-L., Tang, N.Y.W., Lévesque, P.L., Loiseau, A., Leonelli, R., Francoeur, S., Martel, R.: Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826 (2015).  https://doi.org/10.1038/nmat4299CrossRefGoogle Scholar
  12. 12.
    Liu, H., Du, Y., Deng, Y., Ye, P.D.: Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44(9), 2732–2743 (2015).  https://doi.org/10.1039/c4cs00257aCrossRefGoogle Scholar
  13. 13.
    Feng, X., Kulish, V.V., Wu, P., Liu, X., Ang, K.-W.: Anomalously enhanced thermal stability of phosphorene via metal adatom doping: an experimental and first-principles study. Nano Res. 9(9), 2687–2695 (2016).  https://doi.org/10.1007/s12274-016-1156-0CrossRefGoogle Scholar
  14. 14.
    Wood, J.D., Wells, S.A., Jariwala, D., Chen, K.-S., Cho, E., Sangwan, V.K., Liu, X., Lauhon, L.J., Marks, T.J., Hersam, M.C.: Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14(12), 6964–6970 (2014).  https://doi.org/10.1021/nl5032293CrossRefGoogle Scholar
  15. 15.
    Zhu, H., McDonnell, S., Qin, X., Azcatl, A., Cheng, L., Addou, R., Kim, J., Ye, P.D., Wallace, R.M.: Al2O3 on black phosphorus by atomic layer deposition: an in situ interface study. ACS Appl. Mater. Interfaces 7(23), 13038–13043 (2015).  https://doi.org/10.1021/acsami.5b03192CrossRefGoogle Scholar
  16. 16.
    Chen, Y., Ren, R., Pu, H., Chang, J., Mao, S., Chen, J.: Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 89, 505–510 (2017).  https://doi.org/10.1016/j.bios.2016.03.059CrossRefGoogle Scholar
  17. 17.
    Cho, S.-Y., Koh, H.-J., Yoo, H.-W., Jung, H.-T.: Tunable chemical sensing performance of black phosphorus by controlled functionalization with noble metals. Chem. Mater. 29(17), 7197–7205 (2017).  https://doi.org/10.1021/acs.chemmater.7b01353CrossRefGoogle Scholar
  18. 18.
    Guo, Z., Chen, S., Wang, Z., Yang, Z., Liu, F., Xu, Y., Wang, J., Yi, Y., Zhang, H., Liao, L., Chu, P.K., Yu, X.-F.: Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 29(42), 1703811 (2017).  https://doi.org/10.1002/adma.201703811CrossRefGoogle Scholar
  19. 19.
    Zhao, Y., Wang, H., Huang, H., Xiao, Q., Xu, Y., Guo, Z., Xie, H., Shao, J., Sun, Z., Han, W., Yu, X.-F., Li, P., Chu, P.K.: Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. 55(16), 5003–5007 (2016).  https://doi.org/10.1002/anie.201512038CrossRefGoogle Scholar
  20. 20.
    Zhang, L., Gao, L.-F., Li, L., Hu, C.-X., Yang, Q.-Q., Zhu, Z.-Y., Peng, R., Wang, Q., Peng, Y., Jin, J., Zhang, H.-L.: Negatively charged 2D black phosphorus for highly efficient covalent functionalization. Mater. Chem. Front. 2(9), 1700–1706 (2018).  https://doi.org/10.1039/c8qm00237aCrossRefGoogle Scholar
  21. 21.
    Liu, Y., Gao, P., Zhang, T., Zhu, X., Zhang, M., Chen, M., Du, P., Wang, G.-W., Ji, H., Yang, J., Yang, S.: Azide passivation of black phosphorus nanosheets: covalent functionalization affords ambient stability enhancement. Angew. Chem. Int. Ed. 58(5), 1479–1483 (2019).  https://doi.org/10.1002/anie.201813218CrossRefGoogle Scholar
  22. 22.
    van Druenen, M., Davitt, F., Collins, T., Glynn, C., O’Dwyer, C., Holmes, J.D., Collins, G.: Covalent functionalization of few-layer black phosphorus using iodonium salts and comparison to diazonium modified black phosphorus. Chem. Mater. 30(14), 4667–4674 (2018).  https://doi.org/10.1021/acs.chemmater.8b01306CrossRefGoogle Scholar
  23. 23.
    Sun, Z., Xie, H., Tang, S., Yu, X.-F., Guo, Z., Shao, J., Zhang, H., Huang, H., Wang, H., Chu, P.K.: Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. 127(39), 11688–11692 (2015).  https://doi.org/10.1002/ange.201506154CrossRefGoogle Scholar
  24. 24.
    Koenig, S.P., Doganov, R.A., Seixas, L., Carvalho, A., Tan, J.Y., Watanabe, K., Taniguchi, T., Yakovlev, N., Castro Neto, A.H., Özyilmaz, B.: Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 16(4), 2145–2151 (2016).  https://doi.org/10.1021/acs.nanolett.5b03278CrossRefGoogle Scholar
  25. 25.
    Liu, Y., Cai, Y., Zhang, G., Zhang, Y.-W., Ang, K.-W.: Al-doped black phosphorus p–n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 27(7), 1604638 (2017).  https://doi.org/10.1002/adfm.201604638CrossRefGoogle Scholar
  26. 26.
    Xiang, D., Han, C., Wu, J., Zhong, S., Liu, Y., Lin, J., Zhang, X.-A., Ping, HuW, Özyilmaz, B., Neto, A.H.C., Wee, A.T.S., Chen, W.: Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 6, 6485 (2015).  https://doi.org/10.1038/ncomms7485CrossRefGoogle Scholar
  27. 27.
    Tang, X., Liang, W., Zhao, J., Li, Z., Qiu, M., Fan, T., Luo, C.S., Zhou, Y., Li, Y., Guo, Z., Fan, D., Zhang, H.: Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 13(47), 1702739 (2017).  https://doi.org/10.1002/smll.201702739CrossRefGoogle Scholar
  28. 28.
    Xu, Y., Yuan, J., Fei, L., Wang, X., Bao, Q., Wang, Y., Zhang, K., Zhang, Y.: Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small 12(36), 5000–5007 (2016).  https://doi.org/10.1002/smll.201600692CrossRefGoogle Scholar
  29. 29.
    Shao, J., Xie, H., Huang, H., Li, Z., Sun, Z., Xu, Y., Xiao, Q., Yu, X.-F., Zhao, Y., Zhang, H., Wang, H., Chu, P.K.: Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016).  https://doi.org/10.1038/ncomms12967, https://www.nature.com/articles/ncomms12967#supplementary-information
  30. 30.
    Zhang, Y., Sun, W., Luo, Z.-Z., Zheng, Y., Yu, Z., Zhang, D., Yang, J., Tan, H.T., Zhu, J., Wang, X., Yan, Q., Dou, S.X.: Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries. Nano Energy 40, 576–586 (2017).  https://doi.org/10.1016/j.nanoen.2017.09.002CrossRefGoogle Scholar
  31. 31.
    Zhu, X., Zhang, T., Sun, Z., Chen, H., Guan, J., Chen, X., Ji, H., Du, P., Yang, S.: Black phosphorus revisited: a missing metal-free elemental photocatalyst for visible light hydrogen evolution. Adv. Mater. 29(17), 1605776 (2017).  https://doi.org/10.1002/adma.201605776CrossRefGoogle Scholar
  32. 32.
    Shao, L., Sun, H., Miao, L., Chen, X., Han, M., Sun, J., Liu, S., Li, L., Cheng, F., Chen, J.: Facile preparation of NH2-functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 6(6), 2494–2499 (2018).  https://doi.org/10.1039/c7ta10884bCrossRefGoogle Scholar
  33. 33.
    Zhu, X., Zhang, T., Jiang, D., Duan, H., Sun, Z., Zhang, M., Jin, H., Guan, R., Liu, Y., Chen, M., Ji, H., Du, P., Yan, W., Wei, S., Lu, Y., Yang, S.: Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules. Nat. Commun. 9(1), 4177 (2018).  https://doi.org/10.1038/s41467-018-06437-1CrossRefGoogle Scholar
  34. 34.
    Xu, G.-L., Chen, Z., Zhong, G.-M., Liu, Y., Yang, Y., Ma, T., Ren, Y., Zuo, X., Wu, X.-H., Zhang, X., Amine, K.: Nanostructured black phosphorus/ketjenblack–multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 16(6), 3955–3965 (2016).  https://doi.org/10.1021/acs.nanolett.6b01777CrossRefGoogle Scholar
  35. 35.
    Doganov, R.A., O’Farrell, E.C.T., Koenig, S.P., Yeo, Y., Ziletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Watanabe, K., Taniguchi, T., Neto, A.H.C., Özyilmaz, B.: Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun. 6, 6647 (2015).  https://doi.org/10.1038/ncomms7647CrossRefGoogle Scholar
  36. 36.
    Du, Y., Yang, L., Zhou, H., Ye, P.D.: Performance enhancement of black phosphorus field-effect transistors by chemical doping. IEEE Electron Device Lett. 37(4), 429–432 (2016).  https://doi.org/10.1109/led.2016.2535905CrossRefGoogle Scholar
  37. 37.
    Mu, H., Lin, S., Wang, Z., Xiao, S., Li, P., Chen, Y., Zhang, H., Bao, H., Lau, S.P., Pan, C., Fan, D., Bao, Q.: Black phosphorus-polymer composites for pulsed lasers. Adv. Opt. Mater. 3(10), 1447–1453 (2015).  https://doi.org/10.1002/adom.201500336CrossRefGoogle Scholar
  38. 38.
    Kasap, S., Capper, P.: Springer Handbook of Electronic and Photonic Materials. Springer International Publishing (2017)Google Scholar
  39. 39.
    Sugahara, S., Takamura, Y., Shuto, Y., Yamamoto, S.: Field-effect spin-transistors. In: Xu, Y., Awschalom, D.D., Nitta, J. (eds.) Handbook of Spintronics, pp. 1243–1279. Springer Netherlands, Dordrecht (2016).  https://doi.org/10.1007/978-94-007-6892-5_44CrossRefGoogle Scholar
  40. 40.
    Eswaraiah, V., Zeng, Q., Long, Y., Liu, Z.: Black phosphorus nanosheets: synthesis, characterization and applications. Small 12(26), 3480–3502 (2016).  https://doi.org/10.1002/smll.201600032CrossRefGoogle Scholar
  41. 41.
    Sorkin, V., Cai, Y., Ong, Z., Zhang, G., Zhang, Y.W.: Recent advances in the study of phosphorene and its nanostructures. Crit. Rev. Solid State Mater. Sci. 42(1), 1–82 (2017).  https://doi.org/10.1080/10408436.2016.1182469CrossRefGoogle Scholar
  42. 42.
    Akhtar, M., Anderson, G., Zhao, R., Alruqi, A., Mroczkowska, J.E., Sumanasekera, G., Jasinski, J.B.: Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Mater. Appl. 1(1), 5 (2017).  https://doi.org/10.1038/s41699-017-0007-5
  43. 43.
    Qiao, H., Wei, Q.: Functional nanofibers in lithium-ion batteries. In: Wei, Q. (ed.) Functional Nanofibers and their Applications, pp. 197–208. Woodhead Publishing (2012).  https://doi.org/10.1533/9780857095640.2.197CrossRefGoogle Scholar
  44. 44.
    Khandelwal, A., Mani, K., Karigerasi, M.H., Lahiri, I.: Phosphorene—the two-dimensional black phosphorous: properties, synthesis and applications. Mater. Sci. Eng.: B 221(Supplement C), 17–34 (2017).  https://doi.org/10.1016/j.mseb.2017.03.011CrossRefGoogle Scholar
  45. 45.
    McCann, J., Bryson, D.: Smart Clothes and Wearable Technology. Elsevier Science (2009)Google Scholar
  46. 46.
    Kakaei, K., Esrafili, M.D., Ehsani, A.: Introduction to catalysis. In: Kakaei, K., Esrafili, M.D., Ehsani, A. (eds.) Interface Science and Technology, vol. 27, pp. 1–21. Elsevier (2019).  https://doi.org/10.1016/B978-0-12-814523-4.00001-0Google Scholar
  47. 47.
    Makhlouf, A.S.H., Tiginyanu, I.: Nanocoatings and Ultra-Thin Films: Technologies and Applications. Elsevier Science (2011)Google Scholar
  48. 48.
    Peixoto, A.C., Silva, A.F.: Smart devices: micro- and nanosensors. In: Rodrigues, L., Mota, M. (eds.) Bioinspired Materials for Medical Applications, pp. 297–329. Woodhead Publishing (2017).  https://doi.org/10.1016/B978-0-08-100741-9.00011-5CrossRefGoogle Scholar
  49. 49.
    Choi, J.R., Yong, K.W., Choi, J.Y., Nilghaz, A., Lin, Y., Xu, J., Lu, X.: Black phosphorus and its biomedical applications. Theranostics 8(4), 1005–1026 (2018).  https://doi.org/10.7150/thno.22573CrossRefGoogle Scholar
  50. 50.
    İşmal, Ö.E., Paul, R.: Composite textiles in high-performance apparel. In: McLoughlin, J., Sabir, T. (eds.) High-Performance Apparel, pp. 377–420. Woodhead Publishing (2018).  https://doi.org/10.1016/B978-0-08-100904-8.00019-5CrossRefGoogle Scholar
  51. 51.
    Sawant, S.N.: Development of biosensors from biopolymer composites. In: Sadasivuni, K.K., Ponnamma, D., Kim, J., Cabibihan, J.J., AlMaadeed, M.A. (eds.) Biopolymer composites in electronics, pp. 353–383. Elsevier (2017).  https://doi.org/10.1016/B978-0-12-809261-3.00013-9CrossRefGoogle Scholar
  52. 52.
    Bhagyaraj, S.M., Oluwafemi, O.S., Kalarikkal, N., Thomas, S.: Applications of Nanomaterials: Advances and Key Technologies. Elsevier Science (2018)Google Scholar
  53. 53.
    Jothi, L., Nageswaran, G.: Plasma modified polymeric materials for biosensors/biodevice applications. In: Thomas, S., Mozetič, M., Cvelbar, U., Špatenka, P., Praveen, K.M. (eds.) Non-Thermal Plasma Technology for Polymeric Materials, pp. 409–437. Elsevier (2019).  https://doi.org/10.1016/B978-0-12-813152-7.00015-9CrossRefGoogle Scholar
  54. 54.
    VanEngelenburg, S.B., Palmer, A.E.: Fluorescent biosensors of protein function. Curr. Opin. Chem. Biol. 12(1), 60–65 (2008).  https://doi.org/10.1016/j.cbpa.2008.01.020CrossRefGoogle Scholar
  55. 55.
    Hirsch, A., Hauke, F.: Post-Graphene 2D chemistry: the emerging field of molybdenum disulfide and black phosphorus functionalization. Angew. Chem. Int. Ed. 57(16), 4338–4354 (2018).  https://doi.org/10.1002/anie.201708211CrossRefGoogle Scholar
  56. 56.
    Ling, X., Wang, H., Huang, S., Xia, F., Dresselhaus, M.S.: The renaissance of black phosphorus. Proc. Natl. Acad. Sci. 112(15), 4523 (2015).  https://doi.org/10.1073/pnas.1416581112CrossRefGoogle Scholar
  57. 57.
    Ryder, C.R., Wood, J.D., Wells, S.A., Hersam, M.C.: Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano 10(4), 3900–3917 (2016).  https://doi.org/10.1021/acsnano.6b01091CrossRefGoogle Scholar
  58. 58.
    Ryder, C.R., Wood, J.D., Wells, S.A., Yang, Y., Jariwala, D., Marks, T.J., Schatz, G.C., Hersam, M.C.: Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8, 597 (2016).  https://doi.org/10.1038/nchem.2505CrossRefGoogle Scholar
  59. 59.
    Boukhvalov, D.W., Rudenko, A.N., Prishchenko, D.A., Mazurenko, V.G., Katsnelson, M.I.: Chemical modifications and stability of phosphorene with impurities: a first principles study. Phys. Chem. Chem. Phys. 17(23), 15209–15217 (2015).  https://doi.org/10.1039/c5cp01901jCrossRefGoogle Scholar
  60. 60.
    Drissi, L.B., Sadki, S., Sadki, K.: Half-oxidized phosphorene: band gap and elastic properties modulation. J. Phys.: Condens. Matter 28(14), 145501 (2016).  https://doi.org/10.1088/0953-8984/28/14/145501CrossRefGoogle Scholar
  61. 61.
    Wang, G., Pandey, R., Karna, S.P.: Phosphorene oxide: stability and electronic properties of a novel two-dimensional material. Nanoscale 7(2), 524–531 (2015).  https://doi.org/10.1039/c4nr05384bCrossRefGoogle Scholar
  62. 62.
    Dai, J., Zeng, X.C.: Structure and stability of two dimensional phosphorene with =O or =NH functionalization. RSC Adv. 4(89), 48017–48021 (2014).  https://doi.org/10.1039/c4ra02850cCrossRefGoogle Scholar
  63. 63.
    Kistanov, A.A., Cai, Y., Zhou, K., Dmitriev, S.V., Zhang, Y.-W.: The role of H2O and O2 molecules and phosphorus vacancies in the structure instability of phosphorene. 2D Mater. 4(1), 015010 (2016).  https://doi.org/10.1088/2053-1583/4/1/015010CrossRefGoogle Scholar
  64. 64.
    Cai, Y., Ke, Q., Zhang, G., Zhang, Y.-W.: Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene. J. Phys. Chem. C 119(6), 3102–3110 (2015).  https://doi.org/10.1021/jp510863pCrossRefGoogle Scholar
  65. 65.
    Sadki, S., Drissi, L.B.: Tunable optical and excitonic properties of phosphorene via oxidation. J. Phys.: Condens. Matter 30(25), 255703 (2018).  https://doi.org/10.1088/1361-648x/aac403CrossRefGoogle Scholar
  66. 66.
    Çakır, D., Sahin, H., Peeters, F.M.: Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B 90(20), 205421 (2014)CrossRefGoogle Scholar
  67. 67.
    Ienco, A., Manca, G., Peruzzini, M., Mealli, C.: Modelling strategies for the covalent functionalization of 2D phosphorene. Dalton Trans. 47(48), 17243–17256 (2018).  https://doi.org/10.1039/c8dt03628dCrossRefGoogle Scholar
  68. 68.
    Scotognella, F., Kriegel, I., Sassolini, S.: Covalent functionalized black phosphorus quantum dots. Opt. Mater. 75, 521–524 (2018).  https://doi.org/10.1016/j.optmat.2017.11.016CrossRefGoogle Scholar
  69. 69.
    Sofer, Z., Luxa, J., Bouša, D., Sedmidubský, D., Lazar, P., Hartman, T., Hardtdegen, H., Pumera, M.: The covalent functionalization of layered black phosphorus. Angew. Chem. Int. Ed. 56(33), 9891–9896 (2017).  https://doi.org/10.1002/anie.201705722CrossRefGoogle Scholar
  70. 70.
    Li, Q., Zhou, Q., Niu, X., Zhao, Y., Chen, Q., Wang, J.: Covalent functionalization of black phosphorus from first-principles. J Phys. Chem. Lett. 7(22), 4540–4546 (2016).  https://doi.org/10.1021/acs.jpclett.6b02192CrossRefGoogle Scholar
  71. 71.
    Abellán, G., Lloret, V., Mundloch, U., Marcia, M., Neiss, C., Görling, A., Varela, M., Hauke, F., Hirsch, A.: Noncovalent functionalization of black phosphorus. Angew. Chem. Int. Ed. 55(47), 14557–14562 (2016).  https://doi.org/10.1002/anie.201604784CrossRefGoogle Scholar
  72. 72.
    Lee, M., Park, Y.H., Kang, E.B., Chae, A., Choi, Y., Jo, S., Kim, Y.J., Park, S.-J., Min, B., An, T.K., Lee, J., In, S.-I., Kim, S.Y., Park, S.Y., In, I.: Highly efficient visible blue-emitting black phosphorus quantum dot: mussel-inspired surface functionalization for bioapplications. ACS Omega 2(10), 7096–7105 (2017).  https://doi.org/10.1021/acsomega.7b01058CrossRefGoogle Scholar
  73. 73.
    Li, Y., Liu, Z., Hou, Y., Yang, G., Fei, X., Zhao, H., Guo, Y., Su, C., Wang, Z., Zhong, H., Zhuang, Z., Guo, Z.: Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy. ACS Appl. Mater. Interfaces 9(30), 25098–25106 (2017).  https://doi.org/10.1021/acsami.7b05824CrossRefGoogle Scholar
  74. 74.
    Hu, H., Gao, H., Gao, L., Li, F., Xu, N., Long, X., Hu, Y., Jin, J., Ma, J.: Covalent functionalization of black phosphorus nanoflakes by carbon free radicals for durable air and water stability. Nanoscale 10(13), 5834–5839 (2018).  https://doi.org/10.1039/c7nr06085hCrossRefGoogle Scholar
  75. 75.
    Artel, V., Guo, Q., Cohen, H., Gasper, R., Ramasubramaniam, A., Xia, F., Naveh, D.: Protective molecular passivation of black phosphorus. npj 2D Mater. Appl. 1(1), 6 (2017).  https://doi.org/10.1038/s41699-017-0004-8
  76. 76.
    Feng, Q., Liu, H., Zhu, M., Shang, J., Liu, D., Cui, X., Shen, D., Kou, L., Mao, D., Zheng, J., Li, C., Zhang, J., Xu, H., Zhao, J.: Electrostatic functionalization and passivation of water-exfoliated few-layer black phosphorus by poly dimethyldiallyl ammonium chloride and its ultrafast laser application. ACS Appl. Mater. Interfaces 10(11), 9679–9687 (2018).  https://doi.org/10.1021/acsami.8b00556CrossRefGoogle Scholar
  77. 77.
    Yu, X., Zhang, S., Zeng, H., Wang, Q.J.: Lateral black phosphorene P-N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy 25, 34–41 (2016).  https://doi.org/10.1016/j.nanoen.2016.04.030CrossRefGoogle Scholar
  78. 78.
    Zhang, R., Li, B., Yang, J.: A first-principles study on electron donor and acceptor molecules adsorbed on phosphorene. J. Phys. Chem. C 119(5), 2871–2878 (2015).  https://doi.org/10.1021/jp5116564CrossRefGoogle Scholar
  79. 79.
    Jing, Y., Tang, Q., He, P., Zhou, Z., Shen, P.: Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene. Nanotechnology 26(9), 095201 (2015).  https://doi.org/10.1088/0957-4484/26/9/095201CrossRefGoogle Scholar
  80. 80.
    Cao, Y., Tian, X., Gu, J., Liu, B., Zhang, B., Song, S., Fan, F., Chen, Y.: Covalent functionalization of black phosphorus with conjugated polymer for information storage. Angew. Chem. Int. Ed. 57(17), 4543–4548 (2018).  https://doi.org/10.1002/anie.201712675CrossRefGoogle Scholar
  81. 81.
    Kulish, V.V., Malyi, O.I., Persson, C., Wu, P.: Adsorption of metal adatoms on single-layer phosphorene. Phys. Chem. Chem. Phys. 17(2), 992–1000 (2015).  https://doi.org/10.1039/c4cp03890hCrossRefGoogle Scholar
  82. 82.
    Lei, S.Y., Yu, Z.Y., Shen, H.Y., Sun, X.L., Wan, N., Yu, H.: CO adsorption on metal-decorated phosphorene. ACS Omega 3(4), 3957–3965 (2018).  https://doi.org/10.1021/acsomega.8b00133CrossRefGoogle Scholar
  83. 83.
    Sun, H., Shang, Y., Yang, Y., Guo, M.: Realization of N-Type semiconducting of phosphorene through surface metal doping and work function study. J. Nanomater. 2018, 9 (2018).  https://doi.org/10.1155/2018/6863890CrossRefGoogle Scholar
  84. 84.
    Rastogi, P., Kumar, S., Bhowmick, S., Agarwal, A., Chauhan, Y.S.: Effective doping of monolayer phosphorene by surface adsorption of atoms for electronic and spintronic applications. IETE J. Res. 63(2), 205–215 (2017).  https://doi.org/10.1080/03772063.2016.1243020CrossRefGoogle Scholar
  85. 85.
    Zhu, H., Zhou, C., Wang, X., Chen, X., Yang, W., Wu, Y., Lin, W.: Doping behaviors of adatoms adsorbed on phosphorene. Phys. Status Solidi B 253(6), 1156–1166 (2016).  https://doi.org/10.1002/pssb.201552586CrossRefGoogle Scholar
  86. 86.
    Ding, Y., Wang, Y.: Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: a first-principles Study. J. Phys. Chem. C 119(19), 10610–10622 (2015).  https://doi.org/10.1021/jp5114152CrossRefGoogle Scholar
  87. 87.
    Zhiyuan, Y., Shuangying, L., Neng, W., Shan, L., Haiyun, S., Hong, Y.: Effect of metal adatoms on hydrogen adsorption properties of phosphorene. Mater. Res. Express 4(4), 045503 (2017).  https://doi.org/10.1088/2053-1591/aa6ac0CrossRefGoogle Scholar
  88. 88.
    Hu, T., Hong, J.: First-principles study of metal adatom adsorption on black phosphorene. J. Phys. Chem. C 119(15), 8199–8207 (2015).  https://doi.org/10.1021/acs.jpcc.5b01300CrossRefGoogle Scholar
  89. 89.
    Musle, V., Choudhary, S.: Tuning the optical properties of phosphorene by adsorption of alkali metals and halogens. Opt. Quant. Electron. 50(7), 285 (2018).  https://doi.org/10.1007/s11082-018-1548-3CrossRefGoogle Scholar
  90. 90.
    Kuang, A., Kuang, M., Yuan, H., Wang, G., Chen, H., Yang, X.: Acidic gases (CO2, NO2 and SO2) capture and dissociation on metal decorated phosphorene. Appl. Surf. Sci. 410(Supplement C), 505–512 (2017).  https://doi.org/10.1016/j.apsusc.2017.03.135CrossRefGoogle Scholar
  91. 91.
    Huang, G.Q., Xing, Z.W., Xing, D.Y.: Prediction of superconductivity in Li-intercalated bilayer phosphorene. Appl. Phys. Lett. 106(11), 113107 (2015).  https://doi.org/10.1063/1.4916100CrossRefGoogle Scholar
  92. 92.
    Han, C., Hu, Z., Gomes, L.C., Bao, Y., Carvalho, A., Tan, S.J.R., Lei, B., Xiang, D., Wu, J., Qi, D., Wang, L., Huo, F., Huang, W., Loh, K.P., Chen, W.: Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett. 17(7), 4122–4129 (2017).  https://doi.org/10.1021/acs.nanolett.7b00903CrossRefGoogle Scholar
  93. 93.
    Zhang, H.-p., Hu, W., Du, A., Lu, X., Zhang, Y.-p., Zhou, J., Lin, X., Tang, Y.: Doped phosphorene for hydrogen capture: a DFT study. Appl. Surf. Sci. 433(Supplement C), 249–255 (2018).  https://doi.org/10.1016/j.apsusc.2017.09.243CrossRefGoogle Scholar
  94. 94.
    Lalitha, M., Nataraj, Y., Lakshmipathi, S.: Calcium decorated and doped phosphorene for gas adsorption. Appl. Surf. Sci. 377(Supplement C), 311–323 (2016).  https://doi.org/10.1016/j.apsusc.2016.03.119CrossRefGoogle Scholar
  95. 95.
    Zhang, H.-p., Du, A., Shi, Q.-b., Zhou, Y., Zhang, Y., Tang, Y.: Adsorption behavior of CO2 on pristine and doped phosphorenes: a dispersion corrected DFT study. J. CO2 Utilization 24, 463–470 (2018).  https://doi.org/10.1016/j.jcou.2018.02.005CrossRefGoogle Scholar
  96. 96.
    Pan, Y., Wang, Y., Ye, M., Quhe, R., Zhong, H., Song, Z., Peng, X., Yu, D., Yang, J., Shi, J., Lu, J.: Monolayer phosphorene-metal contacts. Chem. Mater. 28(7), 2100–2109 (2016).  https://doi.org/10.1021/acs.chemmater.5b04899CrossRefGoogle Scholar
  97. 97.
    Zhang, X., Pan, Y., Ye, M., Quhe, R., Wang, Y., Guo, Y., Zhang, H., Dan, Y., Song, Z., Li, J., Yang, J., Guo, W., Lu, J.: Three-layer phosphorene-metal interfaces. Nano Res. 11(2), 707–721 (2018).  https://doi.org/10.1007/s12274-017-1680-6CrossRefGoogle Scholar
  98. 98.
    Luo, Y., Ren, C., Wang, S., Li, S., Zhang, P., Yu, J., Sun, M., Sun, Z., Tang, W.: Adsorption of transition metals on black phosphorene: a first-principles study. Nanoscale Res. Lett. 13(1), 282 (2018).  https://doi.org/10.1186/s11671-018-2696-xCrossRefGoogle Scholar
  99. 99.
    Zhang, Y., Dong, N., Tao, H., Yan, C., Huang, J., Liu, T., Robertson, A.W., Texter, J., Wang, J., Sun, Z.: Exfoliation of stable 2D black phosphorus for device fabrication. Chem. Mater. 29(15), 6445–6456 (2017).  https://doi.org/10.1021/acs.chemmater.7b01991CrossRefGoogle Scholar
  100. 100.
    Kuang, A., Ran, Y., Peng, B., Kuang, M., Wang, G., Yuan, H., Tian, C., Chen, H.: Adsorption and decomposition of metal decorated phosphorene toward H2S, HCN and NH3 molecules. Appl. Surf. Sci. 473, 242–250 (2019).  https://doi.org/10.1016/j.apsusc.2018.12.131CrossRefGoogle Scholar
  101. 101.
    Lee, G., Jung, S., Jang, S., Kim, J.: Platinum-functionalized black phosphorus hydrogen sensors. Appl. Phys. Lett. 110(24), 242103 (2017).  https://doi.org/10.1063/1.4985708CrossRefGoogle Scholar
  102. 102.
    Caporali, M., Serrano-Ruiz, M., Telesio, F., Heun, S., Nicotra, G., Spinella, C., Peruzzini, M.: Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. Chem. Commun. 53(79), 10946–10949 (2017).  https://doi.org/10.1039/c7cc05906jCrossRefGoogle Scholar
  103. 103.
    Hu, Z., Li, Q., Lei, B., Wu, J., Zhou, Q., Gu, C., Wen, X., Wang, J., Liu, Y., Li, S., Zheng, Y., Lu, J., He, J., Wang, L., Xiong, Q., Wang, J., Chen, W.: Abnormal near-infrared absorption in 2D black phosphorus induced by Ag nanoclusters surface functionalization. Adv. Mater. 30(43), 1801931 (2018).  https://doi.org/10.1002/adma.201801931CrossRefGoogle Scholar
  104. 104.
    Prakash, A., Cai, Y., Zhang, G., Zhang, Y.-W., Ang, K.-W.: Black phosphorus N-Type field-effect transistor with ultrahigh electron mobility via aluminum adatoms doping. Small 13(5), 1602909 (2017).  https://doi.org/10.1002/smll.201602909CrossRefGoogle Scholar
  105. 105.
    Yang, B., Wan, B., Zhou, Q., Wang, Y., Hu, W., Lv, W., Chen, Q., Zeng, Z., Wen, F., Xiang, J., Yuan, S., Wang, J., Zhang, B., Wang, W., Zhang, J., Xu, B., Zhao, Z., Tian, Y., Liu, Z.: Te-doped black phosphorus field-effect transistors. Adv. Mater. 28(42), 9408–9415 (2016).  https://doi.org/10.1002/adma.201603723CrossRefGoogle Scholar
  106. 106.
    Nahas, S., Ghosh, B., Bhowmick, S., Agarwal, A.: First-principles cluster expansion study of functionalization of black phosphorene via fluorination and oxidation. Phys. Rev. B 93(16), 165413 (2016).  https://doi.org/10.1103/PhysRevB.93.165413CrossRefGoogle Scholar
  107. 107.
    Yang, Q., Xiong, W., Zhu, L., Gao, G., Wu, M.: Chemically functionalized phosphorene: two-dimensional multiferroics with vertical polarization and mobile magnetism. J. Am. Chem. Soc. 139(33), 11506–11512 (2017).  https://doi.org/10.1021/jacs.7b04422CrossRefGoogle Scholar
  108. 108.
    Zheng, H., Zhang, J., Yang, B., Du, X., Yan, Y.: A first-principles study on the magnetic properties of nonmetal atom doped phosphorene monolayers. Phys. Chem. Chem. Phys. 17(25), 16341–16350 (2015).  https://doi.org/10.1039/c5cp00916bCrossRefGoogle Scholar
  109. 109.
    Ehlen, N., Senkovskiy, B.V., Fedorov, A.V., Perucchi, A., Di Pietro, P., Sanna, A., Profeta, G., Petaccia, L., Grüneis, A.: Evolution of electronic structure of few-layer phosphorene from angle-resolved photoemission spectroscopy of black phosphorous. Phys. Rev. B 94(24), 245410 (2016).  https://doi.org/10.1103/PhysRevB.94.245410CrossRefGoogle Scholar
  110. 110.
    Suvansinpan, N., Hussain, F., Zhang, G., Chiu, C.H., Cai, Y., Zhang, Y.-W.: Substitutionally doped phosphorene: electronic properties and gas sensing. Nanotechnology 27(6), 065708 (2016).  https://doi.org/10.1088/0957-4484/27/6/065708CrossRefGoogle Scholar
  111. 111.
    Sanna, A., Fedorov, A.V., Verbitskiy, N.I., Fink, J., Krellner, C., Petaccia, L., Chikina, A., Usachov, D.Y., Grüneis, A., Profeta, G.: First-principles and angle-resolved photoemission study of lithium doped metallic black phosphorous. 2D Materials 3(2), 025031 (2016).  https://doi.org/10.1088/2053-1583/3/2/025031CrossRefGoogle Scholar
  112. 112.
    Sun, X., Luan, S., Shen, H., Lei, S.: Effect of metal doping on carbon monoxide adsorption on phosphorene: a first-principles study. Superlattices Microstruct. 124, 168–175 (2018).  https://doi.org/10.1016/j.spmi.2018.09.037CrossRefGoogle Scholar
  113. 113.
    Zhang, H-p, Hou, J-l, Wang, Y., Tang, P-p, Zhang, Y-p, Lin, X-y, Liu, C., Tang, Y.: Adsorption behavior of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on pristine and doped black phosphorene: a DFT study. Chemosphere 185, 509–517 (2017).  https://doi.org/10.1016/j.chemosphere.2017.06.120CrossRefGoogle Scholar
  114. 114.
    Babar, R., Kabir, M.: Transition metal and vacancy defect complexes in phosphorene: a spintronic perspective. J. Phys. Chem. C 120(27), 14991–15000 (2016).  https://doi.org/10.1021/acs.jpcc.6b05069CrossRefGoogle Scholar
  115. 115.
    Wang, Y., Pham, A., Li, S., Yi, J.: Electronic and magnetic properties of transition-metal-doped monolayer black phosphorus by defect engineering. J. Phys. Chem. C 120(18), 9773–9779 (2016).  https://doi.org/10.1021/acs.jpcc.6b00981CrossRefGoogle Scholar
  116. 116.
    Yu, W., Zhu, Z., Niu, C.-Y., Li, C., Cho, J.-H., Jia, Y.: Dilute magnetic semiconductor and half-metal behaviors in 3d transition-metal doped black and blue phosphorenes: a first-principles study. Nanoscale Res. Lett. 11(1), 77 (2016).  https://doi.org/10.1186/s11671-016-1296-xCrossRefGoogle Scholar
  117. 117.
    Zhai, C., Dai, X., Li, W., Ma, Y., Wang, T., Tang, Y.: Strain tuning of magnetism in transition-metal atom doped phosphorene. Superlattices Microstruct. 101(Supplement C), 49–56 (2017).  https://doi.org/10.1016/j.spmi.2016.10.090CrossRefGoogle Scholar
  118. 118.
    Yuan, Z., Li, N.: Manipulating the magnetic moment in phosphorene by lanthanide atom doping: a first-principle study. RSC Adv. 6(94), 92048–92056 (2016).  https://doi.org/10.1039/c6ra14546aCrossRefGoogle Scholar
  119. 119.
    Luan, Z., Zhao, L., Chang, H., Sun, D., Tan, C., Huang, Y.: First-principles study on electronic structures and magnetic properties of Eu-doped phosphorene. Superlattices Microstruct. 111(Supplement C), 816–823 (2017).  https://doi.org/10.1016/j.spmi.2017.07.039CrossRefGoogle Scholar
  120. 120.
    Hashmi, A., Hong, J.: Transition metal doped phosphorene: first-principles study. J. Phys. Chem. C 119(17), 9198–9204 (2015).  https://doi.org/10.1021/jp511574nCrossRefGoogle Scholar
  121. 121.
    Arabieh, M., Azar, Y.T.: In silico insight into ammonia adsorption on pristine and X-doped phosphorene (X=B, C, N, O, Si, and Ni). Appl. Surf. Sci. 396(Supplement C), 1411–1419 (2017).  https://doi.org/10.1016/j.apsusc.2016.11.175CrossRefGoogle Scholar
  122. 122.
    Wei, Z., Zhang, Y., Wang, S., Wang, C., Ma, J.: Fe-doped phosphorene for the nitrogen reduction reaction. J. Mater. Chem. A 6(28), 13790–13796 (2018).  https://doi.org/10.1039/c8ta03989eCrossRefGoogle Scholar
  123. 123.
    Seixas, L., Carvalho, A., Castro Neto, A.H.: Atomically thin dilute magnetism in Co-doped phosphorene. Phys. Rev. B 91(15), 155138 (2015).  https://doi.org/10.1103/PhysRevB.91.155138CrossRefGoogle Scholar
  124. 124.
    Qi-Hang, Y., Yong, J., Wei, Z., Bo-Zhao, W., Jiu-Ren, Y., Ping, Z., Yan-Huai, D.: Noble metal atoms doped phosphorene: electronic properties and gas adsorption ability. Mater. Res. Express 4(4), 045703 (2017)CrossRefGoogle Scholar
  125. 125.
    Yu, W., Zhu, Z., Niu, C.-Y., Li, C., Cho, J.-H., Jia, Y.: Anomalous doping effect in black phosphorene using first-principles calculations. Phys. Chem. Chem. Phys. 17(25), 16351–16358 (2015).  https://doi.org/10.1039/c5cp01732gCrossRefGoogle Scholar
  126. 126.
    Boukhvalov, D.W.: The atomic and electronic structure of nitrogen- and boron-doped phosphorene. Phys. Chem. Chem. Phys. 17(40), 27210–27216 (2015).  https://doi.org/10.1039/c5cp05071eCrossRefGoogle Scholar
  127. 127.
    Yang, L., Mi, W., Wang, X.: Tailoring magnetism of black phosphorene doped with B, C, N, O, F, S and Se atom: a DFT calculation. J. Alloys Compounds 662(Supplement C), 528–533 (2016).  https://doi.org/10.1016/j.jallcom.2015.12.095CrossRefGoogle Scholar
  128. 128.
    Khan, I., Hong, J.: Manipulation of magnetic state in phosphorene layer by non-magnetic impurity doping. New J. Phys. 17(2), 023056 (2015).  https://doi.org/10.1088/1367-2630/17/2/023056CrossRefGoogle Scholar
  129. 129.
    Guo, C., Xia, C., Fang, L., Wang, T., Liu, Y.: Tuning anisotropic electronic transport properties of phosphorene via substitutional doping. Phys. Chem. Chem. Phys. 18(37), 25869–25878 (2016).  https://doi.org/10.1039/c6cp04508aCrossRefGoogle Scholar
  130. 130.
    Yang, Q., Meng, R.S., Jiang, J.K., Liang, Q.H., Tan, C.J., Cai, M., Sun, X., Yang, D.G., Ren, T.L., Chen, X.P.: First-principles study of sulfur dioxide sensor based on phosphorenes. IEEE Electron Dev. Lett. 37(5), 660–662 (2016).  https://doi.org/10.1109/led.2016.2543243CrossRefGoogle Scholar
  131. 131.
    Zhao, J., Liu, X., Chen, Z.: Frustrated lewis pair catalysts in two dimensions: B/Al-doped phosphorenes as promising catalysts for hydrogenation of small unsaturated molecules. ACS Catal. 7(1), 766–771 (2017).  https://doi.org/10.1021/acscatal.6b02727CrossRefGoogle Scholar
  132. 132.
    Liu, D., Shi, Y., Tao, L., Yan, D., Chen, R., Wang, S.: First-principles study of methanol adsorption on heteroatom-doped phosphorene. Chin. Chem. Lett. 30(1), 207–210 (2019).  https://doi.org/10.1016/j.cclet.2018.01.041CrossRefGoogle Scholar
  133. 133.
    Wu, Z.-F., Gao, P.-F., Guo, L., Kang, J., Fang, D.-Q., Zhang, Y., Xia, M.-G., Zhang, S.-L., Wen, Y.-H.: Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene. Phys. Chem. Chem. Phys. 19(47), 31796–31803 (2017).  https://doi.org/10.1039/c7cp05404aCrossRefGoogle Scholar
  134. 134.
    Kong, L.-J., Liu, G.-H., Zhang, Y.-J.: Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping. RSC Adv. 6(13), 10919–10929 (2016).  https://doi.org/10.1039/c5ra22004aCrossRefGoogle Scholar
  135. 135.
    Guo, C., Wang, T., Xia, C., Liu, Y.: Modulation of electronic transport properties in armchair phosphorene nanoribbons by doping and edge passivation. Sci. Rep. 7(1), 12799 (2017).  https://doi.org/10.1038/s41598-017-13212-7CrossRefGoogle Scholar
  136. 136.
    Nasria, A.H.A.: Electronic properties of phosphorene nanoribbons doped with boron, aluminum and carbon. J. Chem. Pharm. Sci. 10(2), 935–939 (2017)Google Scholar
  137. 137.
    Guo, Y., Robertson, J.: Vacancy and doping states in monolayer and bulk black phosphorus. Sci. Rep. 5, 14165 (2015).  https://doi.org/10.1038/srep14165CrossRefGoogle Scholar
  138. 138.
    Zhu, Z.-L., Yu, W.-Y., Ren, X.-Y., Sun, Q., Jia, Y.: Grain boundary in phosphorene and its unique roles on C and O doping. EPL (Europhys. Lett.) 109(4), 47003 (2015).  https://doi.org/10.1209/0295-5075/109/47003CrossRefGoogle Scholar
  139. 139.
    Ghambarian, M., Ghashghaee, M., Azizi, Z., Balar, M.: Molecular interactions of MeOH and EtOH with black phosphorus monolayer: a periodic density functional study. Phys. Chem. Res. 7(2), 435–447 (2019).  https://doi.org/10.22036/pcr.2019.172026.1594CrossRefGoogle Scholar
  140. 140.
    Xie, Y., Zhang, L., Zhu, Y., Liu, L., Guo, H.: Photogalvanic effect in monolayer black phosphorus. Nanotechnology 26(45), 455202 (2015).  https://doi.org/10.1088/0957-4484/26/45/455202CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mehdi Ghambarian
    • 1
  • Zahra Azizi
    • 2
  • Mohammad Ghashghaee
    • 3
    Email author
  1. 1.Gas Conversion Department, Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran
  2. 2.Department of Chemistry, Karaj BranchIslamic Azad UniversityKarajIran
  3. 3.Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations