Functionalization and Doping of Black Phosphorus

  • Mehdi Ghambarian
  • Zahra Azizi
  • Mohammad GhashghaeeEmail author
Part of the Engineering Materials book series (ENG.MAT.)


Black phosphorus (BP), a new rising star in the post-graphene era, has been extensively studied from early 2014 onward. To take full advantage of its potential, much research is rapidly generated on the modification of BP-based nanostructures via functionalization, decoration, and doping. The fast-growing research in this area has led to significant trends in the fast-evolving field of 2D nanomaterials over a wide range of applications including field effect transistors, diodes, phonon detectors, biomedicine, digital circuits, sodium- and lithium-ion batteries, sensors, photocatalysis, electrocatalysis, thermoelectric materials, memory devices, and so forth. This chapter is aimed to present a state-of-the-art overview of the advancements of the field through the modifications mentioned above from both theoretical and experimental points of view.







Atomic force microscopy




Atomic layer deposition




Black phosphorus


BP quantum dot


Differential charge density


Density functional theory


Dilute magnetic semiconductor




Emulsion solvent evaporation


Tetrafluoro tetracyanoquinodimethane


Field effect transistor


Generalized gradient approximation




Local density of states


Molecular dynamics


Mineralizer-assisted gas-phase transformation




Negative differential resistance




Nonvolatile memory




Periodic boundary conditions


Poly dimethyldiallyl ammonium chloride


Polyethylene glycol


Photogalvanic effect


Poly(lactic-co-glycolic acid)


Peak-to-valley ratio


Red phosphorus


Surface plasmon resonance






Transmission electron microscopy


Transition metal


Transition metal dichalcogenide




Valence band maximum


Vacuum deposition


van der Waals


Wet impregnation


White phosphorus


  1. 1.
    Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., Castro Neto, A.H.: Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016). Scholar
  2. 2.
    Du, Y., Luo, Z., Liu, H., Xu, X., Ye, P.D.: Anisotropic properties of black phosphorus. In: Avouris, P., Low, T., Heinz, T.F. (eds.) 2D Materials: Properties and Devices, pp. 413–434. Cambridge University Press, Cambridge (2017).
  3. 3.
    Jing, Y., Zhang, X., Zhou, Z.: Phosphorene: what can we know from computations? WIREs Comput. Mol. Sci. 6(1), 5–19 (2016). Scholar
  4. 4.
    Ghashghaee, M., Ghambarian, M.: Adsorption of toxic mercury, lead, cadmium, and arsenic ions on black phosphorous nanosheet: first-principles calculations. Struct. Chem. 30(1), 85–96 (2019). Scholar
  5. 5.
    Greenwood, N.N., Earnshaw, A.: Chemistry of the Elements. Elsevier Science (2012)Google Scholar
  6. 6.
    Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C.: Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 118(25), 14051–14059 (2014). Scholar
  7. 7.
    Bridgman, P.W.: Two new modifications of phosphorus. J. Am. Chem. Soc. 36(7), 1344–1363 (1914). Scholar
  8. 8.
    Lei, W., Liu, G., Zhang, J., Liu, M.: Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46(12), 3492–3509 (2017). Scholar
  9. 9.
    Keyes, R.W.: The electrical properties of black phosphorus. Phys. Rev. 92(3), 580–584 (1953). Scholar
  10. 10.
    Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). Scholar
  11. 11.
    Favron, A., Gaufrès, E., Fossard, F., Phaneuf-L’Heureux, A.-L., Tang, N.Y.W., Lévesque, P.L., Loiseau, A., Leonelli, R., Francoeur, S., Martel, R.: Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826 (2015). Scholar
  12. 12.
    Liu, H., Du, Y., Deng, Y., Ye, P.D.: Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44(9), 2732–2743 (2015). Scholar
  13. 13.
    Feng, X., Kulish, V.V., Wu, P., Liu, X., Ang, K.-W.: Anomalously enhanced thermal stability of phosphorene via metal adatom doping: an experimental and first-principles study. Nano Res. 9(9), 2687–2695 (2016). Scholar
  14. 14.
    Wood, J.D., Wells, S.A., Jariwala, D., Chen, K.-S., Cho, E., Sangwan, V.K., Liu, X., Lauhon, L.J., Marks, T.J., Hersam, M.C.: Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14(12), 6964–6970 (2014). Scholar
  15. 15.
    Zhu, H., McDonnell, S., Qin, X., Azcatl, A., Cheng, L., Addou, R., Kim, J., Ye, P.D., Wallace, R.M.: Al2O3 on black phosphorus by atomic layer deposition: an in situ interface study. ACS Appl. Mater. Interfaces 7(23), 13038–13043 (2015). Scholar
  16. 16.
    Chen, Y., Ren, R., Pu, H., Chang, J., Mao, S., Chen, J.: Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 89, 505–510 (2017). Scholar
  17. 17.
    Cho, S.-Y., Koh, H.-J., Yoo, H.-W., Jung, H.-T.: Tunable chemical sensing performance of black phosphorus by controlled functionalization with noble metals. Chem. Mater. 29(17), 7197–7205 (2017). Scholar
  18. 18.
    Guo, Z., Chen, S., Wang, Z., Yang, Z., Liu, F., Xu, Y., Wang, J., Yi, Y., Zhang, H., Liao, L., Chu, P.K., Yu, X.-F.: Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 29(42), 1703811 (2017). Scholar
  19. 19.
    Zhao, Y., Wang, H., Huang, H., Xiao, Q., Xu, Y., Guo, Z., Xie, H., Shao, J., Sun, Z., Han, W., Yu, X.-F., Li, P., Chu, P.K.: Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. 55(16), 5003–5007 (2016). Scholar
  20. 20.
    Zhang, L., Gao, L.-F., Li, L., Hu, C.-X., Yang, Q.-Q., Zhu, Z.-Y., Peng, R., Wang, Q., Peng, Y., Jin, J., Zhang, H.-L.: Negatively charged 2D black phosphorus for highly efficient covalent functionalization. Mater. Chem. Front. 2(9), 1700–1706 (2018). Scholar
  21. 21.
    Liu, Y., Gao, P., Zhang, T., Zhu, X., Zhang, M., Chen, M., Du, P., Wang, G.-W., Ji, H., Yang, J., Yang, S.: Azide passivation of black phosphorus nanosheets: covalent functionalization affords ambient stability enhancement. Angew. Chem. Int. Ed. 58(5), 1479–1483 (2019). Scholar
  22. 22.
    van Druenen, M., Davitt, F., Collins, T., Glynn, C., O’Dwyer, C., Holmes, J.D., Collins, G.: Covalent functionalization of few-layer black phosphorus using iodonium salts and comparison to diazonium modified black phosphorus. Chem. Mater. 30(14), 4667–4674 (2018). Scholar
  23. 23.
    Sun, Z., Xie, H., Tang, S., Yu, X.-F., Guo, Z., Shao, J., Zhang, H., Huang, H., Wang, H., Chu, P.K.: Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. 127(39), 11688–11692 (2015). Scholar
  24. 24.
    Koenig, S.P., Doganov, R.A., Seixas, L., Carvalho, A., Tan, J.Y., Watanabe, K., Taniguchi, T., Yakovlev, N., Castro Neto, A.H., Özyilmaz, B.: Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 16(4), 2145–2151 (2016). Scholar
  25. 25.
    Liu, Y., Cai, Y., Zhang, G., Zhang, Y.-W., Ang, K.-W.: Al-doped black phosphorus p–n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 27(7), 1604638 (2017). Scholar
  26. 26.
    Xiang, D., Han, C., Wu, J., Zhong, S., Liu, Y., Lin, J., Zhang, X.-A., Ping, HuW, Özyilmaz, B., Neto, A.H.C., Wee, A.T.S., Chen, W.: Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 6, 6485 (2015). Scholar
  27. 27.
    Tang, X., Liang, W., Zhao, J., Li, Z., Qiu, M., Fan, T., Luo, C.S., Zhou, Y., Li, Y., Guo, Z., Fan, D., Zhang, H.: Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 13(47), 1702739 (2017). Scholar
  28. 28.
    Xu, Y., Yuan, J., Fei, L., Wang, X., Bao, Q., Wang, Y., Zhang, K., Zhang, Y.: Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small 12(36), 5000–5007 (2016). Scholar
  29. 29.
    Shao, J., Xie, H., Huang, H., Li, Z., Sun, Z., Xu, Y., Xiao, Q., Yu, X.-F., Zhao, Y., Zhang, H., Wang, H., Chu, P.K.: Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016).,
  30. 30.
    Zhang, Y., Sun, W., Luo, Z.-Z., Zheng, Y., Yu, Z., Zhang, D., Yang, J., Tan, H.T., Zhu, J., Wang, X., Yan, Q., Dou, S.X.: Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries. Nano Energy 40, 576–586 (2017). Scholar
  31. 31.
    Zhu, X., Zhang, T., Sun, Z., Chen, H., Guan, J., Chen, X., Ji, H., Du, P., Yang, S.: Black phosphorus revisited: a missing metal-free elemental photocatalyst for visible light hydrogen evolution. Adv. Mater. 29(17), 1605776 (2017). Scholar
  32. 32.
    Shao, L., Sun, H., Miao, L., Chen, X., Han, M., Sun, J., Liu, S., Li, L., Cheng, F., Chen, J.: Facile preparation of NH2-functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 6(6), 2494–2499 (2018). Scholar
  33. 33.
    Zhu, X., Zhang, T., Jiang, D., Duan, H., Sun, Z., Zhang, M., Jin, H., Guan, R., Liu, Y., Chen, M., Ji, H., Du, P., Yan, W., Wei, S., Lu, Y., Yang, S.: Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules. Nat. Commun. 9(1), 4177 (2018). Scholar
  34. 34.
    Xu, G.-L., Chen, Z., Zhong, G.-M., Liu, Y., Yang, Y., Ma, T., Ren, Y., Zuo, X., Wu, X.-H., Zhang, X., Amine, K.: Nanostructured black phosphorus/ketjenblack–multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 16(6), 3955–3965 (2016). Scholar
  35. 35.
    Doganov, R.A., O’Farrell, E.C.T., Koenig, S.P., Yeo, Y., Ziletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Watanabe, K., Taniguchi, T., Neto, A.H.C., Özyilmaz, B.: Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun. 6, 6647 (2015). Scholar
  36. 36.
    Du, Y., Yang, L., Zhou, H., Ye, P.D.: Performance enhancement of black phosphorus field-effect transistors by chemical doping. IEEE Electron Device Lett. 37(4), 429–432 (2016). Scholar
  37. 37.
    Mu, H., Lin, S., Wang, Z., Xiao, S., Li, P., Chen, Y., Zhang, H., Bao, H., Lau, S.P., Pan, C., Fan, D., Bao, Q.: Black phosphorus-polymer composites for pulsed lasers. Adv. Opt. Mater. 3(10), 1447–1453 (2015). Scholar
  38. 38.
    Kasap, S., Capper, P.: Springer Handbook of Electronic and Photonic Materials. Springer International Publishing (2017)Google Scholar
  39. 39.
    Sugahara, S., Takamura, Y., Shuto, Y., Yamamoto, S.: Field-effect spin-transistors. In: Xu, Y., Awschalom, D.D., Nitta, J. (eds.) Handbook of Spintronics, pp. 1243–1279. Springer Netherlands, Dordrecht (2016). Scholar
  40. 40.
    Eswaraiah, V., Zeng, Q., Long, Y., Liu, Z.: Black phosphorus nanosheets: synthesis, characterization and applications. Small 12(26), 3480–3502 (2016). Scholar
  41. 41.
    Sorkin, V., Cai, Y., Ong, Z., Zhang, G., Zhang, Y.W.: Recent advances in the study of phosphorene and its nanostructures. Crit. Rev. Solid State Mater. Sci. 42(1), 1–82 (2017). Scholar
  42. 42.
    Akhtar, M., Anderson, G., Zhao, R., Alruqi, A., Mroczkowska, J.E., Sumanasekera, G., Jasinski, J.B.: Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Mater. Appl. 1(1), 5 (2017).
  43. 43.
    Qiao, H., Wei, Q.: Functional nanofibers in lithium-ion batteries. In: Wei, Q. (ed.) Functional Nanofibers and their Applications, pp. 197–208. Woodhead Publishing (2012). Scholar
  44. 44.
    Khandelwal, A., Mani, K., Karigerasi, M.H., Lahiri, I.: Phosphorene—the two-dimensional black phosphorous: properties, synthesis and applications. Mater. Sci. Eng.: B 221(Supplement C), 17–34 (2017). Scholar
  45. 45.
    McCann, J., Bryson, D.: Smart Clothes and Wearable Technology. Elsevier Science (2009)Google Scholar
  46. 46.
    Kakaei, K., Esrafili, M.D., Ehsani, A.: Introduction to catalysis. In: Kakaei, K., Esrafili, M.D., Ehsani, A. (eds.) Interface Science and Technology, vol. 27, pp. 1–21. Elsevier (2019). Scholar
  47. 47.
    Makhlouf, A.S.H., Tiginyanu, I.: Nanocoatings and Ultra-Thin Films: Technologies and Applications. Elsevier Science (2011)Google Scholar
  48. 48.
    Peixoto, A.C., Silva, A.F.: Smart devices: micro- and nanosensors. In: Rodrigues, L., Mota, M. (eds.) Bioinspired Materials for Medical Applications, pp. 297–329. Woodhead Publishing (2017). Scholar
  49. 49.
    Choi, J.R., Yong, K.W., Choi, J.Y., Nilghaz, A., Lin, Y., Xu, J., Lu, X.: Black phosphorus and its biomedical applications. Theranostics 8(4), 1005–1026 (2018). Scholar
  50. 50.
    İşmal, Ö.E., Paul, R.: Composite textiles in high-performance apparel. In: McLoughlin, J., Sabir, T. (eds.) High-Performance Apparel, pp. 377–420. Woodhead Publishing (2018). Scholar
  51. 51.
    Sawant, S.N.: Development of biosensors from biopolymer composites. In: Sadasivuni, K.K., Ponnamma, D., Kim, J., Cabibihan, J.J., AlMaadeed, M.A. (eds.) Biopolymer composites in electronics, pp. 353–383. Elsevier (2017). Scholar
  52. 52.
    Bhagyaraj, S.M., Oluwafemi, O.S., Kalarikkal, N., Thomas, S.: Applications of Nanomaterials: Advances and Key Technologies. Elsevier Science (2018)Google Scholar
  53. 53.
    Jothi, L., Nageswaran, G.: Plasma modified polymeric materials for biosensors/biodevice applications. In: Thomas, S., Mozetič, M., Cvelbar, U., Špatenka, P., Praveen, K.M. (eds.) Non-Thermal Plasma Technology for Polymeric Materials, pp. 409–437. Elsevier (2019). Scholar
  54. 54.
    VanEngelenburg, S.B., Palmer, A.E.: Fluorescent biosensors of protein function. Curr. Opin. Chem. Biol. 12(1), 60–65 (2008). Scholar
  55. 55.
    Hirsch, A., Hauke, F.: Post-Graphene 2D chemistry: the emerging field of molybdenum disulfide and black phosphorus functionalization. Angew. Chem. Int. Ed. 57(16), 4338–4354 (2018). Scholar
  56. 56.
    Ling, X., Wang, H., Huang, S., Xia, F., Dresselhaus, M.S.: The renaissance of black phosphorus. Proc. Natl. Acad. Sci. 112(15), 4523 (2015). Scholar
  57. 57.
    Ryder, C.R., Wood, J.D., Wells, S.A., Hersam, M.C.: Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano 10(4), 3900–3917 (2016). Scholar
  58. 58.
    Ryder, C.R., Wood, J.D., Wells, S.A., Yang, Y., Jariwala, D., Marks, T.J., Schatz, G.C., Hersam, M.C.: Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8, 597 (2016). Scholar
  59. 59.
    Boukhvalov, D.W., Rudenko, A.N., Prishchenko, D.A., Mazurenko, V.G., Katsnelson, M.I.: Chemical modifications and stability of phosphorene with impurities: a first principles study. Phys. Chem. Chem. Phys. 17(23), 15209–15217 (2015). Scholar
  60. 60.
    Drissi, L.B., Sadki, S., Sadki, K.: Half-oxidized phosphorene: band gap and elastic properties modulation. J. Phys.: Condens. Matter 28(14), 145501 (2016). Scholar
  61. 61.
    Wang, G., Pandey, R., Karna, S.P.: Phosphorene oxide: stability and electronic properties of a novel two-dimensional material. Nanoscale 7(2), 524–531 (2015). Scholar
  62. 62.
    Dai, J., Zeng, X.C.: Structure and stability of two dimensional phosphorene with =O or =NH functionalization. RSC Adv. 4(89), 48017–48021 (2014). Scholar
  63. 63.
    Kistanov, A.A., Cai, Y., Zhou, K., Dmitriev, S.V., Zhang, Y.-W.: The role of H2O and O2 molecules and phosphorus vacancies in the structure instability of phosphorene. 2D Mater. 4(1), 015010 (2016). Scholar
  64. 64.
    Cai, Y., Ke, Q., Zhang, G., Zhang, Y.-W.: Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene. J. Phys. Chem. C 119(6), 3102–3110 (2015). Scholar
  65. 65.
    Sadki, S., Drissi, L.B.: Tunable optical and excitonic properties of phosphorene via oxidation. J. Phys.: Condens. Matter 30(25), 255703 (2018). Scholar
  66. 66.
    Çakır, D., Sahin, H., Peeters, F.M.: Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B 90(20), 205421 (2014)CrossRefGoogle Scholar
  67. 67.
    Ienco, A., Manca, G., Peruzzini, M., Mealli, C.: Modelling strategies for the covalent functionalization of 2D phosphorene. Dalton Trans. 47(48), 17243–17256 (2018). Scholar
  68. 68.
    Scotognella, F., Kriegel, I., Sassolini, S.: Covalent functionalized black phosphorus quantum dots. Opt. Mater. 75, 521–524 (2018). Scholar
  69. 69.
    Sofer, Z., Luxa, J., Bouša, D., Sedmidubský, D., Lazar, P., Hartman, T., Hardtdegen, H., Pumera, M.: The covalent functionalization of layered black phosphorus. Angew. Chem. Int. Ed. 56(33), 9891–9896 (2017). Scholar
  70. 70.
    Li, Q., Zhou, Q., Niu, X., Zhao, Y., Chen, Q., Wang, J.: Covalent functionalization of black phosphorus from first-principles. J Phys. Chem. Lett. 7(22), 4540–4546 (2016). Scholar
  71. 71.
    Abellán, G., Lloret, V., Mundloch, U., Marcia, M., Neiss, C., Görling, A., Varela, M., Hauke, F., Hirsch, A.: Noncovalent functionalization of black phosphorus. Angew. Chem. Int. Ed. 55(47), 14557–14562 (2016). Scholar
  72. 72.
    Lee, M., Park, Y.H., Kang, E.B., Chae, A., Choi, Y., Jo, S., Kim, Y.J., Park, S.-J., Min, B., An, T.K., Lee, J., In, S.-I., Kim, S.Y., Park, S.Y., In, I.: Highly efficient visible blue-emitting black phosphorus quantum dot: mussel-inspired surface functionalization for bioapplications. ACS Omega 2(10), 7096–7105 (2017). Scholar
  73. 73.
    Li, Y., Liu, Z., Hou, Y., Yang, G., Fei, X., Zhao, H., Guo, Y., Su, C., Wang, Z., Zhong, H., Zhuang, Z., Guo, Z.: Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy. ACS Appl. Mater. Interfaces 9(30), 25098–25106 (2017). Scholar
  74. 74.
    Hu, H., Gao, H., Gao, L., Li, F., Xu, N., Long, X., Hu, Y., Jin, J., Ma, J.: Covalent functionalization of black phosphorus nanoflakes by carbon free radicals for durable air and water stability. Nanoscale 10(13), 5834–5839 (2018). Scholar
  75. 75.
    Artel, V., Guo, Q., Cohen, H., Gasper, R., Ramasubramaniam, A., Xia, F., Naveh, D.: Protective molecular passivation of black phosphorus. npj 2D Mater. Appl. 1(1), 6 (2017).
  76. 76.
    Feng, Q., Liu, H., Zhu, M., Shang, J., Liu, D., Cui, X., Shen, D., Kou, L., Mao, D., Zheng, J., Li, C., Zhang, J., Xu, H., Zhao, J.: Electrostatic functionalization and passivation of water-exfoliated few-layer black phosphorus by poly dimethyldiallyl ammonium chloride and its ultrafast laser application. ACS Appl. Mater. Interfaces 10(11), 9679–9687 (2018). Scholar
  77. 77.
    Yu, X., Zhang, S., Zeng, H., Wang, Q.J.: Lateral black phosphorene P-N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy 25, 34–41 (2016). Scholar
  78. 78.
    Zhang, R., Li, B., Yang, J.: A first-principles study on electron donor and acceptor molecules adsorbed on phosphorene. J. Phys. Chem. C 119(5), 2871–2878 (2015). Scholar
  79. 79.
    Jing, Y., Tang, Q., He, P., Zhou, Z., Shen, P.: Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene. Nanotechnology 26(9), 095201 (2015). Scholar
  80. 80.
    Cao, Y., Tian, X., Gu, J., Liu, B., Zhang, B., Song, S., Fan, F., Chen, Y.: Covalent functionalization of black phosphorus with conjugated polymer for information storage. Angew. Chem. Int. Ed. 57(17), 4543–4548 (2018). Scholar
  81. 81.
    Kulish, V.V., Malyi, O.I., Persson, C., Wu, P.: Adsorption of metal adatoms on single-layer phosphorene. Phys. Chem. Chem. Phys. 17(2), 992–1000 (2015). Scholar
  82. 82.
    Lei, S.Y., Yu, Z.Y., Shen, H.Y., Sun, X.L., Wan, N., Yu, H.: CO adsorption on metal-decorated phosphorene. ACS Omega 3(4), 3957–3965 (2018). Scholar
  83. 83.
    Sun, H., Shang, Y., Yang, Y., Guo, M.: Realization of N-Type semiconducting of phosphorene through surface metal doping and work function study. J. Nanomater. 2018, 9 (2018). Scholar
  84. 84.
    Rastogi, P., Kumar, S., Bhowmick, S., Agarwal, A., Chauhan, Y.S.: Effective doping of monolayer phosphorene by surface adsorption of atoms for electronic and spintronic applications. IETE J. Res. 63(2), 205–215 (2017). Scholar
  85. 85.
    Zhu, H., Zhou, C., Wang, X., Chen, X., Yang, W., Wu, Y., Lin, W.: Doping behaviors of adatoms adsorbed on phosphorene. Phys. Status Solidi B 253(6), 1156–1166 (2016). Scholar
  86. 86.
    Ding, Y., Wang, Y.: Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: a first-principles Study. J. Phys. Chem. C 119(19), 10610–10622 (2015). Scholar
  87. 87.
    Zhiyuan, Y., Shuangying, L., Neng, W., Shan, L., Haiyun, S., Hong, Y.: Effect of metal adatoms on hydrogen adsorption properties of phosphorene. Mater. Res. Express 4(4), 045503 (2017). Scholar
  88. 88.
    Hu, T., Hong, J.: First-principles study of metal adatom adsorption on black phosphorene. J. Phys. Chem. C 119(15), 8199–8207 (2015). Scholar
  89. 89.
    Musle, V., Choudhary, S.: Tuning the optical properties of phosphorene by adsorption of alkali metals and halogens. Opt. Quant. Electron. 50(7), 285 (2018). Scholar
  90. 90.
    Kuang, A., Kuang, M., Yuan, H., Wang, G., Chen, H., Yang, X.: Acidic gases (CO2, NO2 and SO2) capture and dissociation on metal decorated phosphorene. Appl. Surf. Sci. 410(Supplement C), 505–512 (2017). Scholar
  91. 91.
    Huang, G.Q., Xing, Z.W., Xing, D.Y.: Prediction of superconductivity in Li-intercalated bilayer phosphorene. Appl. Phys. Lett. 106(11), 113107 (2015). Scholar
  92. 92.
    Han, C., Hu, Z., Gomes, L.C., Bao, Y., Carvalho, A., Tan, S.J.R., Lei, B., Xiang, D., Wu, J., Qi, D., Wang, L., Huo, F., Huang, W., Loh, K.P., Chen, W.: Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett. 17(7), 4122–4129 (2017). Scholar
  93. 93.
    Zhang, H.-p., Hu, W., Du, A., Lu, X., Zhang, Y.-p., Zhou, J., Lin, X., Tang, Y.: Doped phosphorene for hydrogen capture: a DFT study. Appl. Surf. Sci. 433(Supplement C), 249–255 (2018). Scholar
  94. 94.
    Lalitha, M., Nataraj, Y., Lakshmipathi, S.: Calcium decorated and doped phosphorene for gas adsorption. Appl. Surf. Sci. 377(Supplement C), 311–323 (2016). Scholar
  95. 95.
    Zhang, H.-p., Du, A., Shi, Q.-b., Zhou, Y., Zhang, Y., Tang, Y.: Adsorption behavior of CO2 on pristine and doped phosphorenes: a dispersion corrected DFT study. J. CO2 Utilization 24, 463–470 (2018). Scholar
  96. 96.
    Pan, Y., Wang, Y., Ye, M., Quhe, R., Zhong, H., Song, Z., Peng, X., Yu, D., Yang, J., Shi, J., Lu, J.: Monolayer phosphorene-metal contacts. Chem. Mater. 28(7), 2100–2109 (2016). Scholar
  97. 97.
    Zhang, X., Pan, Y., Ye, M., Quhe, R., Wang, Y., Guo, Y., Zhang, H., Dan, Y., Song, Z., Li, J., Yang, J., Guo, W., Lu, J.: Three-layer phosphorene-metal interfaces. Nano Res. 11(2), 707–721 (2018). Scholar
  98. 98.
    Luo, Y., Ren, C., Wang, S., Li, S., Zhang, P., Yu, J., Sun, M., Sun, Z., Tang, W.: Adsorption of transition metals on black phosphorene: a first-principles study. Nanoscale Res. Lett. 13(1), 282 (2018). Scholar
  99. 99.
    Zhang, Y., Dong, N., Tao, H., Yan, C., Huang, J., Liu, T., Robertson, A.W., Texter, J., Wang, J., Sun, Z.: Exfoliation of stable 2D black phosphorus for device fabrication. Chem. Mater. 29(15), 6445–6456 (2017). Scholar
  100. 100.
    Kuang, A., Ran, Y., Peng, B., Kuang, M., Wang, G., Yuan, H., Tian, C., Chen, H.: Adsorption and decomposition of metal decorated phosphorene toward H2S, HCN and NH3 molecules. Appl. Surf. Sci. 473, 242–250 (2019). Scholar
  101. 101.
    Lee, G., Jung, S., Jang, S., Kim, J.: Platinum-functionalized black phosphorus hydrogen sensors. Appl. Phys. Lett. 110(24), 242103 (2017). Scholar
  102. 102.
    Caporali, M., Serrano-Ruiz, M., Telesio, F., Heun, S., Nicotra, G., Spinella, C., Peruzzini, M.: Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. Chem. Commun. 53(79), 10946–10949 (2017). Scholar
  103. 103.
    Hu, Z., Li, Q., Lei, B., Wu, J., Zhou, Q., Gu, C., Wen, X., Wang, J., Liu, Y., Li, S., Zheng, Y., Lu, J., He, J., Wang, L., Xiong, Q., Wang, J., Chen, W.: Abnormal near-infrared absorption in 2D black phosphorus induced by Ag nanoclusters surface functionalization. Adv. Mater. 30(43), 1801931 (2018). Scholar
  104. 104.
    Prakash, A., Cai, Y., Zhang, G., Zhang, Y.-W., Ang, K.-W.: Black phosphorus N-Type field-effect transistor with ultrahigh electron mobility via aluminum adatoms doping. Small 13(5), 1602909 (2017). Scholar
  105. 105.
    Yang, B., Wan, B., Zhou, Q., Wang, Y., Hu, W., Lv, W., Chen, Q., Zeng, Z., Wen, F., Xiang, J., Yuan, S., Wang, J., Zhang, B., Wang, W., Zhang, J., Xu, B., Zhao, Z., Tian, Y., Liu, Z.: Te-doped black phosphorus field-effect transistors. Adv. Mater. 28(42), 9408–9415 (2016). Scholar
  106. 106.
    Nahas, S., Ghosh, B., Bhowmick, S., Agarwal, A.: First-principles cluster expansion study of functionalization of black phosphorene via fluorination and oxidation. Phys. Rev. B 93(16), 165413 (2016). Scholar
  107. 107.
    Yang, Q., Xiong, W., Zhu, L., Gao, G., Wu, M.: Chemically functionalized phosphorene: two-dimensional multiferroics with vertical polarization and mobile magnetism. J. Am. Chem. Soc. 139(33), 11506–11512 (2017). Scholar
  108. 108.
    Zheng, H., Zhang, J., Yang, B., Du, X., Yan, Y.: A first-principles study on the magnetic properties of nonmetal atom doped phosphorene monolayers. Phys. Chem. Chem. Phys. 17(25), 16341–16350 (2015). Scholar
  109. 109.
    Ehlen, N., Senkovskiy, B.V., Fedorov, A.V., Perucchi, A., Di Pietro, P., Sanna, A., Profeta, G., Petaccia, L., Grüneis, A.: Evolution of electronic structure of few-layer phosphorene from angle-resolved photoemission spectroscopy of black phosphorous. Phys. Rev. B 94(24), 245410 (2016). Scholar
  110. 110.
    Suvansinpan, N., Hussain, F., Zhang, G., Chiu, C.H., Cai, Y., Zhang, Y.-W.: Substitutionally doped phosphorene: electronic properties and gas sensing. Nanotechnology 27(6), 065708 (2016). Scholar
  111. 111.
    Sanna, A., Fedorov, A.V., Verbitskiy, N.I., Fink, J., Krellner, C., Petaccia, L., Chikina, A., Usachov, D.Y., Grüneis, A., Profeta, G.: First-principles and angle-resolved photoemission study of lithium doped metallic black phosphorous. 2D Materials 3(2), 025031 (2016). Scholar
  112. 112.
    Sun, X., Luan, S., Shen, H., Lei, S.: Effect of metal doping on carbon monoxide adsorption on phosphorene: a first-principles study. Superlattices Microstruct. 124, 168–175 (2018). Scholar
  113. 113.
    Zhang, H-p, Hou, J-l, Wang, Y., Tang, P-p, Zhang, Y-p, Lin, X-y, Liu, C., Tang, Y.: Adsorption behavior of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on pristine and doped black phosphorene: a DFT study. Chemosphere 185, 509–517 (2017). Scholar
  114. 114.
    Babar, R., Kabir, M.: Transition metal and vacancy defect complexes in phosphorene: a spintronic perspective. J. Phys. Chem. C 120(27), 14991–15000 (2016). Scholar
  115. 115.
    Wang, Y., Pham, A., Li, S., Yi, J.: Electronic and magnetic properties of transition-metal-doped monolayer black phosphorus by defect engineering. J. Phys. Chem. C 120(18), 9773–9779 (2016). Scholar
  116. 116.
    Yu, W., Zhu, Z., Niu, C.-Y., Li, C., Cho, J.-H., Jia, Y.: Dilute magnetic semiconductor and half-metal behaviors in 3d transition-metal doped black and blue phosphorenes: a first-principles study. Nanoscale Res. Lett. 11(1), 77 (2016). Scholar
  117. 117.
    Zhai, C., Dai, X., Li, W., Ma, Y., Wang, T., Tang, Y.: Strain tuning of magnetism in transition-metal atom doped phosphorene. Superlattices Microstruct. 101(Supplement C), 49–56 (2017). Scholar
  118. 118.
    Yuan, Z., Li, N.: Manipulating the magnetic moment in phosphorene by lanthanide atom doping: a first-principle study. RSC Adv. 6(94), 92048–92056 (2016). Scholar
  119. 119.
    Luan, Z., Zhao, L., Chang, H., Sun, D., Tan, C., Huang, Y.: First-principles study on electronic structures and magnetic properties of Eu-doped phosphorene. Superlattices Microstruct. 111(Supplement C), 816–823 (2017). Scholar
  120. 120.
    Hashmi, A., Hong, J.: Transition metal doped phosphorene: first-principles study. J. Phys. Chem. C 119(17), 9198–9204 (2015). Scholar
  121. 121.
    Arabieh, M., Azar, Y.T.: In silico insight into ammonia adsorption on pristine and X-doped phosphorene (X=B, C, N, O, Si, and Ni). Appl. Surf. Sci. 396(Supplement C), 1411–1419 (2017). Scholar
  122. 122.
    Wei, Z., Zhang, Y., Wang, S., Wang, C., Ma, J.: Fe-doped phosphorene for the nitrogen reduction reaction. J. Mater. Chem. A 6(28), 13790–13796 (2018). Scholar
  123. 123.
    Seixas, L., Carvalho, A., Castro Neto, A.H.: Atomically thin dilute magnetism in Co-doped phosphorene. Phys. Rev. B 91(15), 155138 (2015). Scholar
  124. 124.
    Qi-Hang, Y., Yong, J., Wei, Z., Bo-Zhao, W., Jiu-Ren, Y., Ping, Z., Yan-Huai, D.: Noble metal atoms doped phosphorene: electronic properties and gas adsorption ability. Mater. Res. Express 4(4), 045703 (2017)CrossRefGoogle Scholar
  125. 125.
    Yu, W., Zhu, Z., Niu, C.-Y., Li, C., Cho, J.-H., Jia, Y.: Anomalous doping effect in black phosphorene using first-principles calculations. Phys. Chem. Chem. Phys. 17(25), 16351–16358 (2015). Scholar
  126. 126.
    Boukhvalov, D.W.: The atomic and electronic structure of nitrogen- and boron-doped phosphorene. Phys. Chem. Chem. Phys. 17(40), 27210–27216 (2015). Scholar
  127. 127.
    Yang, L., Mi, W., Wang, X.: Tailoring magnetism of black phosphorene doped with B, C, N, O, F, S and Se atom: a DFT calculation. J. Alloys Compounds 662(Supplement C), 528–533 (2016). Scholar
  128. 128.
    Khan, I., Hong, J.: Manipulation of magnetic state in phosphorene layer by non-magnetic impurity doping. New J. Phys. 17(2), 023056 (2015). Scholar
  129. 129.
    Guo, C., Xia, C., Fang, L., Wang, T., Liu, Y.: Tuning anisotropic electronic transport properties of phosphorene via substitutional doping. Phys. Chem. Chem. Phys. 18(37), 25869–25878 (2016). Scholar
  130. 130.
    Yang, Q., Meng, R.S., Jiang, J.K., Liang, Q.H., Tan, C.J., Cai, M., Sun, X., Yang, D.G., Ren, T.L., Chen, X.P.: First-principles study of sulfur dioxide sensor based on phosphorenes. IEEE Electron Dev. Lett. 37(5), 660–662 (2016). Scholar
  131. 131.
    Zhao, J., Liu, X., Chen, Z.: Frustrated lewis pair catalysts in two dimensions: B/Al-doped phosphorenes as promising catalysts for hydrogenation of small unsaturated molecules. ACS Catal. 7(1), 766–771 (2017). Scholar
  132. 132.
    Liu, D., Shi, Y., Tao, L., Yan, D., Chen, R., Wang, S.: First-principles study of methanol adsorption on heteroatom-doped phosphorene. Chin. Chem. Lett. 30(1), 207–210 (2019). Scholar
  133. 133.
    Wu, Z.-F., Gao, P.-F., Guo, L., Kang, J., Fang, D.-Q., Zhang, Y., Xia, M.-G., Zhang, S.-L., Wen, Y.-H.: Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene. Phys. Chem. Chem. Phys. 19(47), 31796–31803 (2017). Scholar
  134. 134.
    Kong, L.-J., Liu, G.-H., Zhang, Y.-J.: Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping. RSC Adv. 6(13), 10919–10929 (2016). Scholar
  135. 135.
    Guo, C., Wang, T., Xia, C., Liu, Y.: Modulation of electronic transport properties in armchair phosphorene nanoribbons by doping and edge passivation. Sci. Rep. 7(1), 12799 (2017). Scholar
  136. 136.
    Nasria, A.H.A.: Electronic properties of phosphorene nanoribbons doped with boron, aluminum and carbon. J. Chem. Pharm. Sci. 10(2), 935–939 (2017)Google Scholar
  137. 137.
    Guo, Y., Robertson, J.: Vacancy and doping states in monolayer and bulk black phosphorus. Sci. Rep. 5, 14165 (2015). Scholar
  138. 138.
    Zhu, Z.-L., Yu, W.-Y., Ren, X.-Y., Sun, Q., Jia, Y.: Grain boundary in phosphorene and its unique roles on C and O doping. EPL (Europhys. Lett.) 109(4), 47003 (2015). Scholar
  139. 139.
    Ghambarian, M., Ghashghaee, M., Azizi, Z., Balar, M.: Molecular interactions of MeOH and EtOH with black phosphorus monolayer: a periodic density functional study. Phys. Chem. Res. 7(2), 435–447 (2019). Scholar
  140. 140.
    Xie, Y., Zhang, L., Zhu, Y., Liu, L., Guo, H.: Photogalvanic effect in monolayer black phosphorus. Nanotechnology 26(45), 455202 (2015). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mehdi Ghambarian
    • 1
  • Zahra Azizi
    • 2
  • Mohammad Ghashghaee
    • 3
    Email author
  1. 1.Gas Conversion Department, Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran
  2. 2.Department of Chemistry, Karaj BranchIslamic Azad UniversityKarajIran
  3. 3.Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations