Skip to main content

ProteinA: An Approach for Analyzing and Visualizing Protein Conformational Transitions Using Fuzzy and Hard Clustering Techniques

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11775))

Abstract

It is not easy finding arguments against the common belief that Proteomics and Genomics are the most challenging and important research fields, posing interesting problems for our current era. Gaining insight into the protein folding process has been the goal of many in the past few decades. Understanding completely how proteins come alive and behave will revolutionize modern medicine. With the main goal of understanding the importance of the protein folding problem and uncovering hidden patterns in protein data, we are analyzing protein conformational transitions with unsupervised learning tools, by applying different types of hard and fuzzy clustering algorithms and comparing the results. As an additional goal, the paper describes a software that can perform on demand analysis on protein data and display the results in a web interface. It is a proof of concept for potential useful features that make software algorithms available for researchers of all domains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Protein clustering online http://proteinclusters.online/proteins.

  2. 2.

    Protein clustering web application https://github.com/albusilvana/proteinclusteringwebapp.

  3. 3.

    Protein clustering docker image on Docker hub https://hub.docker.com/r/salbert/proteinclustering.

References

  1. Albayrak, S., Amasyali, F.: Fuzzy c-means clustering on medical diagnostic systems. In: Turkish Symposium on Artificial Intelligence and Neural Networks - TAINN (2003)

    Google Scholar 

  2. Albert, S., Czibula, G., Teletin, M.: Analyzing the impact of protein representation on mining structural patterns from protein data. In: IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI 2018), pp. 533–538 (2018)

    Google Scholar 

  3. Albert, S., Teletin, M., Czibula, G.: Analysing protein data using unsupervised learning techniques. Int. J. Innovative Comput. Inf. Control 14(3), 861–880 (2018)

    Google Scholar 

  4. Albert, S.: Protein clustering docker image (2018). https://hub.docker.com/r/salbert/proteinclustering

  5. Albert, S.: Protein clustering git repository (2018). https://github.com/albusilvana/proteinclusteringwebapp

  6. Albert, S.: Protein clustering analysis (2019). http://proteinclusters.online/proteins

  7. Ambrogelly, A., Palioura, S., Söll, D.: Natural expansion of the genetic code. Nat. Chem. Biol. 3(1), 29–35 (2007)

    Article  Google Scholar 

  8. Anderson, A.C.: The process of structure-based drug design. Chem. Biol. 10(9), 787–797 (2003)

    Article  Google Scholar 

  9. Anderson, C.: Docker [software engineering]. IEEE Softw. 32(3), 102–c3 (2015)

    Article  Google Scholar 

  10. Austin, H.P., et al.: Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Nat. Acad. Sci. 115(19), E4350–E4357 (2018)

    Article  Google Scholar 

  11. Berjanskii, M.V., Neal, S., Wishart, D.S.: PREDITOR: a web server for predicting protein torsion angle restraints. Nucleic Acids Res. 34(Web Server), W63–W69 (2006)

    Article  Google Scholar 

  12. Berman, H., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

  14. Grinberg, M.: Flask Web Development: Developing Web Applications with Python. O’Reilly Media Inc., Sebastopol (2014)

    Google Scholar 

  15. Han, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San Francisco (2005)

    Google Scholar 

  16. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1998)

    MATH  Google Scholar 

  17. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. Wiley, Hoboken (1990)

    Book  Google Scholar 

  18. Leaver-Fay, A., et al.: ROSETTA3. In: Computer Methods, Part C, pp. 545–574. Elsevier (2011)

    Google Scholar 

  19. Lorbeer, B., Kosareva, A., Deva, B., Softić, D., Ruppel, P., Küpper, A.: Variations on the clustering algorithm BIRCH. Big Data Res. 11, 44–53 (2018)

    Article  Google Scholar 

  20. Pandini, A., Fornili, A., Kleinjung, J.: Structural alphabets derived from attractors in conformational space. BMC Bioinformatics 11(97), 1–18 (2010)

    Google Scholar 

  21. Pedregosa, F., et al.: Édouard Duchesnay: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Pitolli, G., Aniello, L., Laurenza, G., Querzoni, L., Baldoni, R.: Malware family identification with BIRCH clustering. In: 2017 International Carnahan Conference on Security Technology (ICCST), October 2017, pp. 1–6 (2017)

    Google Scholar 

  23. Rosenberg, A., Hirschberg, J.: V-measure: a conditional entropy-based external cluster evaluation measure. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp. 410–420 (2007)

    Google Scholar 

  24. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  25. Schubert, M., Labudde, D., Oschkinat, H., Schmieder, P.: A software tool for the prediction of Xaa-Pro peptide bond conformations in proteins based on \(^{13}\)C chemical shift statistics. J. Biomol. NMR 24(2), 149–154 (2002)

    Article  Google Scholar 

  26. Teletin, M., Czibula, G., Albert, S., Bocicor, I.: Using unsupervised learning methods for enhancing protein structure insight. In: International Conference on Knowledge Based and Intelligent Information and Engineering Systems (KES), pp. 19–28 (2018)

    Article  Google Scholar 

  27. Tien, M.Z., Meyer, A.G., Sydykova, D.K., Spielman, S.J., Wilke, C.O.: Maximum allowed solvent accessibilites of residues in proteins. PLoS One 8(11), e80635 (2013)

    Article  Google Scholar 

  28. Trosset, J.Y., Scheraga, H.A.: PRODOCK: software package for protein modeling and docking. J. Comput. Chem. 20(4), 412–427 (1999)

    Article  Google Scholar 

  29. Venkatkumar, I.A., Shardaben, S.J.K.: Comparative study of data mining clustering algorithms. In: 2016 International Conference on Data Science and Engineering (ICDSE), August 2016, pp. 1–7 (2016)

    Google Scholar 

  30. Wei, R., Oeser, T., Then, J., Föllner, C.G., Zimmermann, W., Sträter, N.: Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from thermobifida fusca. Appl. Microbiol. Biotechnol. 98, 7815–7823 (2014)

    Article  Google Scholar 

  31. Ye, Y., Godzik, A.: FATCAT: a web server for flexible structure comparison and structure similarity searching. Nucleic Acids Res. 32, 582–585 (2004)

    Article  Google Scholar 

  32. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, SIGMOD 1996, pp. 103–114. ACM, New York (1996)

    Google Scholar 

  33. Zhang, T., Ramakrishnan, R., Livny, M.: Data Min. Knowl. Disc. 1(2), 141–182 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank lecturer Alessandro Pandini from Brunel University, London for providing the protein data sets used in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Albert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Albert, S., Czibula, G. (2019). ProteinA: An Approach for Analyzing and Visualizing Protein Conformational Transitions Using Fuzzy and Hard Clustering Techniques. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds) Knowledge Science, Engineering and Management. KSEM 2019. Lecture Notes in Computer Science(), vol 11775. Springer, Cham. https://doi.org/10.1007/978-3-030-29551-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29551-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29550-9

  • Online ISBN: 978-3-030-29551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics