Skip to main content

Conductive Polymer Based Flexible Supercapacitor

  • Chapter
  • First Online:
Book cover Self-standing Substrates

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

In the recent days the demand of portable, thin and flexible electronics such as roll-up display, touch screen, smart electronics and wearable sensors, are drawing a great interest in the daily life of human being because of advancement in materials and technology. In order to simplify this growing electronic demand, super capacitor is fascinating as a favourable energy storage devices. Supercapacitor has more power density, faster charge-discharge cycle and higher energy storage capacity with compare to Li-ion batteries. Recently, flexible super capacitor is the main focus in the flexible electronics due to its higher flexibility, high power density and high capacitance performance. Conducting polymers based supercapacitor is more promising candidate compare to other materials in terms of their flexibility, high redox active specific capacitance and essential elastic nature. In this chapter different conducting polymer (CPs) based super capacitor have been explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, H., Wang, Y., Wang, X., Zheng, L., Wang, X., Yi, L., Bai, L., Zhang, X.: Polypyrrole/carbon aerogel composite materials for supercapacitor. J. Power Sources 195(19), 6964–6969 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.074 (Elsevier B.V.)

    Article  CAS  Google Scholar 

  2. Chang, H.H., Chang, C.K., Tsai, Y.C., Liao, C.S.: Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon 50(6), 2331–2336 (2012). https://doi.org/10.1016/j.carbon.2012.01.056 (Elsevier Ltd.)

    Article  CAS  Google Scholar 

  3. Chen, J., Jia, C., Wan, Z.: Novel hybrid nanocomposite based on poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes/graphene as electrode material for supercapacitor. Synth. Met. 189, 69–76 (2014). https://doi.org/10.1016/j.synthmet.2014.01.001 (Elsevier B.V.)

    Article  CAS  Google Scholar 

  4. Chu, C.Y., Tsai, J.T., Sun, C.L.: Synthesis of PEDOT-modified graphene composite materials as flexible electrodes for energy storage and conversion applications. Int. J. Hydrog. Energy 37(18), 13880–13886 (2012). https://doi.org/10.1016/j.ijhydene.2012.05.017 (Elsevier Ltd.)

    Article  CAS  Google Scholar 

  5. Dao, L.H., Talbi, H., Just, P.E.: Electropolymerization of aniline on carbonized polyacrylonitrile aerogel electrodes: applications for supercapacitors. J. Appl. Electrochem. 33(6), 465–473 (2003)

    Article  Google Scholar 

  6. Eftekhari, A., Li, L., Yang, Y.: Polyaniline supercapacitors. J. Power Source 347, 86–107 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.054 (Elsevier B.V.)

    Article  CAS  Google Scholar 

  7. Ghenaatian, H.R., Mousavi, M.F., Kazemi, S.H., Shamsipur, M.: Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor. Synth. Met. 159(17–18), 1717–1722 (2009). https://doi.org/10.1016/j.synthmet.2009.05.014

    Article  CAS  Google Scholar 

  8. Girija, T.C., Sangaranarayanan, M.V.: Polyaniline-based nickel electrodes for electrochemical supercapacitors-influence of Triton X-100. J. Power Sources 159(2), 1519–1526 (2006). https://doi.org/10.1016/j.jpowsour.2005.11.078

    Article  CAS  Google Scholar 

  9. Gupta, V., Miura, N.: High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Mater. Lett. 60(12), 1466–1469 (2006). https://doi.org/10.1016/j.matlet.2005.11.047

    Article  CAS  Google Scholar 

  10. Hughes, M., Chen, G.Z., Shaffer, M.S.P., Fray, D.J., Windle, A.H.: Controlling the nanostructure of electrochemically grown nanoporous composites of carbon nanotubes and conducting polymers. Compos. Sci. Technol. 64(15 SPEC. ISS.), 2325–2331 (2004). https://doi.org/10.1016/j.compscitech.2004.01.026

    Article  CAS  Google Scholar 

  11. Kalaji, M., Murphy, P.J., Williams, G.O.: Study of conducting polymers for use as redox supercapacitors. Synth. Met. 102(1–3), 1360–1361 (1999). https://doi.org/10.1016/S0379-6779(98)01334-4

    Article  CAS  Google Scholar 

  12. Kazemi, S.H., Kiani, M.A., Mohamadi, R., Eskandarian, L.: Metal-polyaniline nanofibre composite for supercapacitor applications. Bull. Mater. Sci. 37(5), 1001–1006 (2014). https://doi.org/10.1007/s12034-014-0037-y

    Article  CAS  Google Scholar 

  13. Ke, Q., Wang, J.: Graphene-based materials for supercapacitor electrodes—a review. J. Materiomics 2(1), 37–54 (2016). https://doi.org/10.1016/j.jmat.2016.01.001 (Elsevier Ltd.)

    Article  Google Scholar 

  14. Lee, H.Uk., Yin, J.L., Park, S.W., Park, J.Y.: Preparation and characterization of PEDOT:PSS wrapped carbon nanotubes/MnO2 composite electrodes for flexible supercapacitors. Synth. Met. 228, 84–90 (2017). https://doi.org/10.1016/j.synthmet.2017.03.016

    Article  CAS  Google Scholar 

  15. Li, Y., Zhao, X., Qian, X., Zhang, Q., Chen, D.: Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors. Langmuir 27(10), 6458–6463 (2011). https://doi.org/10.1021/la2003063

    Article  CAS  Google Scholar 

  16. Lin, Z., Goikolea, E., Balducci, A., Naoi, K., Taberna, P.L., Salanne, M., Yushin, G., Simon, P.: Materials for supercapacitors: when Li-ion battery power is not enough. Mater. Today 21(4), 419–436 (2018). https://doi.org/10.1016/j.mattod.2018.01.035 (Elsevier Ltd.)

    Article  CAS  Google Scholar 

  17. Liu, C., Li, F., Lai-Peng, Ma., Cheng, H.M.: Advanced materials for energy storage. Adv. Mater. 22(8), 28–62 (2010). https://doi.org/10.1002/adma.200903328

    Article  CAS  Google Scholar 

  18. Liu, K., Zhenglong, H., Xue, R., Zhang, J., Zhu, J.: Electropolymerization of high stable poly(3,4-ethylenedioxythiophene) in ionic liquids and its potential applications in electrochemical capacitor. J. Power Sources 179(2), 858–862 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.024

    Article  CAS  Google Scholar 

  19. Lota, K., Khomenko, V., Frackowiak, E.: Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J. Phys. Chem. Solids 65(2–3), 295–301 (2004). https://doi.org/10.1016/j.jpcs.2003.10.051

    Article  CAS  Google Scholar 

  20. Mastragostino, M., Arbizzani, C., Soavi, F.: X Gynecologic Cancer 148, 1–12 (2007). https://doi.org/10.1016/s0167-2738(02)00093-0

    Article  CAS  Google Scholar 

  21. Miller, J.R., Simon, P.: Materials science: electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008). https://doi.org/10.1126/science.1158736

    Article  CAS  Google Scholar 

  22. Mondal, S.K., Rajendra Prasad, K., Munichandraiah, N.: Analysis of electrochemical impedance of polyaniline films prepared by galvanostatic, potentiostatic and potentiodynamic methods. Synth. Met. 148(3), 275–286 (2005). https://doi.org/10.1016/j.synthmet.2004.10.010

    Article  CAS  Google Scholar 

  23. Moussa, M., Shi, G., Hao, W., Zhao, Z., Voelcker, N.H., Losic, D., Ma, J.: Development of flexible supercapacitors using an inexpensive graphene/PEDOT/MnO2 sponge composite. Mater. Des. 125, 1–10 (2017). https://doi.org/10.1016/j.matdes.2017.03.075

    Article  CAS  Google Scholar 

  24. Muzaffar, A., Basheer Ahamed, M., Deshmukh, K., Thirumalai, J.: A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew. Sustain. Energy Rev. 101, 123–145 (2019). https://doi.org/10.1016/j.rser.2018.10.026

    Article  CAS  Google Scholar 

  25. Prasad, K.R., Koga, K., Miura, N.: Electrochemical deposition of nanostructured indium oxide: high-performance electrode material for redox supercapacitors. Chem. Mater. 16(10), 1845–1847 (2004). https://doi.org/10.1021/cm0497576

    Article  CAS  Google Scholar 

  26. Rudge, A., Raistnck, I.A.N.: A study of the electrochemical properties of conducting polymers for application in capacitors 39(2), 273–87 (1994)

    Google Scholar 

  27. Ryu, K.S., Kim, K.M., Park, N.G., Park, Y.J., Chang, S.H.: Symmetric redox supercapacitor with conducting polyaniline electrodes. J. Power Sources 103(2), 305–309 (2002). https://doi.org/10.1016/S0378-7753(01)00862-X

    Article  CAS  Google Scholar 

  28. Schneuwly, A., Gallay, R.: [Detlef_Stolten,_Bernd_Emonts]_Hydrogen_Science_an, 1–10 (2000)

    Google Scholar 

  29. Sharma, V., Sahoo, A., Sharma, Y., Mohanty, P.: Synthesis of nanoporous hypercrosslinked polyaniline (HCPANI) for gas sorption and electrochemical supercapacitor applications. RSC Adv. 5(57), 45749–45754 (2015). https://doi.org/10.1039/c5ra03016a (Royal Society of Chemistry)

    Article  CAS  Google Scholar 

  30. Shown, I., Ganguly, A., Chen, L.C., Chen, K.H.: Conducting polymer-based flexible supercapacitor. Energy Sci. Eng. 3(1), 1–25 (2015). https://doi.org/10.1002/ese3.50

    Article  CAS  Google Scholar 

  31. Snook, G.A., Chen, G.Z.: The measurement of specific capacitances of conducting polymers using the quartz crystal microbalance. J. Electroanal. Chem. 612(1), 140–146 (2008). https://doi.org/10.1016/j.jelechem.2007.08.024

    Article  CAS  Google Scholar 

  32. Snook, G.A., Kao, P., Best, A.S.: Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources (2011). https://doi.org/10.1016/j.jpowsour.2010.06.084

    Article  Google Scholar 

  33. Taheri, P., Hsieh, S., Bahrami, M.: Investigating electrical contact resistance losses in lithium-ion battery assemblies for hybrid and electric vehicles. J. Power Sources 196(15), 6525–6533 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.056 (Elsevier B.V.)

    Article  CAS  Google Scholar 

  34. Wang, G., Zhang, L., Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). https://doi.org/10.1039/c1cs15060j

    Article  CAS  Google Scholar 

  35. Wang, T., Wang, W., Dai, Y., Zhang, H., Shen, Z., Chen, Y., Xiaoping, H.: Electrochemical synthesis of polyaniline films on activated carbon for supercapacitor application. Russ. J. Electrochem. 51(8), 743–747 (2015). https://doi.org/10.1134/S1023193515080133

    Article  CAS  Google Scholar 

  36. Wang, W., Lei, W., Yao, T., Xia, X., Huang, W., Hao, Q., Wang, X.: One-pot synthesis of graphene/SnO2/PEDOT ternary electrode material for supercapacitors. Electrochim. Acta 108, 118–126 (2013). https://doi.org/10.1016/j.electacta.2013.07.012 (Elsevier Ltd.)

    Article  CAS  Google Scholar 

  37. Wang, X., Han, X., Lim, M., Singh, N., Gan, C.L., Jan, Ma., Lee, P.S.: Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application. J. Phys. Chem. C 116(23), 12448–12454 (2012). https://doi.org/10.1021/jp3028353

    Article  CAS  Google Scholar 

  38. Weng, Y.T., Wu, N.L.: High-performance poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate conducting-polymer supercapacitor containing hetero-dimensional carbon additives. J. Power Sources 238, 69–73 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.070 (Elsevier B.V.)

    Article  CAS  Google Scholar 

  39. Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004). https://doi.org/10.1021/cr020730k

    Article  CAS  Google Scholar 

  40. Wu, X., Lian, M.: Highly flexible solid-state supercapacitor based on graphene/polypyrrole hydrogel. J. Power Sources 362, 184–191 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.042 (Elsevier B.V.)

    Article  CAS  Google Scholar 

  41. Xu, C., Sun, J., Gao, L.: Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance. J. Mater. Chem. 21(30), 11253–11258 (2011). https://doi.org/10.1039/c1jm11275a

    Article  CAS  Google Scholar 

  42. Xu, J., Wang, D., Fan, L., Yuan, Y., Wei, W., Liu, R., Gu, S., Xu, W.: Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Org. Electron. Phys. Mater. Appl. 26, 292–299 (2015). https://doi.org/10.1016/j.orgel.2015.07.054 (Elsevier B.V.)

    Article  CAS  Google Scholar 

  43. Xu, L., Jia, M., Li, Y., Zhang, S., Jin, X.: Design and synthesis of graphene/activated carbon/polypyrrole flexible supercapacitor electrodes. RSC Adv. 7(50), 31342–31351 (2017). https://doi.org/10.1039/c7ra04566b (Royal Society of Chemistry)

    Article  CAS  Google Scholar 

  44. Yuan, L., Yao, B., Bin, H., Huo, K., Chen, W., Zhou, J.: Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ. Sci. 6(2), 470–476 (2013). https://doi.org/10.1039/c2ee23977a

    Article  CAS  Google Scholar 

  45. Yun, T.G., Hwang, B.I., Kim, D., Hyun, S., Han, S.M.: Polypyrrole-MnO2 -coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability. ACS Appl. Mater. Interfaces 7(17), 9228–9234 (2015). https://doi.org/10.1021/acsami.5b01745

    Article  CAS  Google Scholar 

  46. Zhang, H., Zhao, Q., Zhou, S., Liu, N., Wang, X., Li, J., Wang, F.: Aqueous dispersed conducting polyaniline nanofibers: promising high specific capacity electrode materials for supercapacitor. J. Power Sources 196(23), 10484–10489 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.066

    Article  CAS  Google Scholar 

  47. Zhou, H., Zhi, X.: Ternary composite electrodes based on poly(3,4–ethylenedioxythiophene)/carbon nanotubes–carboxyl graphene for improved electrochemical capacitive performances. Synth. Me. 234, 139–44 (2017). https://doi.org/10.1016/j.synthmet.2017.10.011 (Elsevier)

    Article  CAS  Google Scholar 

  48. Zhou, Y.K., He, B.L., Zhou, W.J., Huang, J., Li, X.H., Bin, W., Li, H.L.: Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites. Electrochim. Acta 49(2), 257–262 (2004). https://doi.org/10.1016/j.electacta.2003.08.007

    Article  CAS  Google Scholar 

  49. Zhu, Z.Z., Wang, G.C., Sun, M.Q., Li, X.W., Li, C.Z.: Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications. Electrochim. Acta 56(3), 1366–1372 (2011). https://doi.org/10.1016/j.electacta.2010.10.070 (Elsevier Ltd.)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Wazed Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wazed Ali, S., Bairagi, S. (2020). Conductive Polymer Based Flexible Supercapacitor. In: Inamuddin, Boddula, R., Asiri, A. (eds) Self-standing Substrates. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29522-6_7

Download citation

Publish with us

Policies and ethics