Skip to main content

Self-supported Electrocatalysts

  • Chapter
  • First Online:
Self-standing Substrates

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Due to depletion of fossil fuels, development of large-scale ground-breaking energy conversion technology like fuel cells, water splitting, air batteries etc. needs pertinent catalyst to ease the process of conversion of chemical energy to electrical energy with greater efficiency in low time consuming. In this chapter, we will discuss the role of self-supported catalyst, which are now trending the era of nanotechnology in electrocatalysis. Self-supported catalyst can be grown on soft substrate, hard substrate or can be free standing. Self-supported electrocatalyst does not needs binder for their attachment on the conductive surface of other electrodes like glassy carbon electrode, platinum electrode, graphite electrode. They have various unique properties like flexible electrode surface, large number of active sites, high electrical conductivity, better catalytic performances, and stability in any pH electrolytic solution. They render much hassle-free electrode synthesis procedure than the powdery electrode material. This chapter mainly focuses on the benefits of using self-supported electrodes in various energy application like water splitting, oxygen reduction reaction (ORR), CO2 reduction reaction, fuel cells. It has been observed that the self-supported electrocatalyst proves to be the superior electrocatalyst in the immense area of electrocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmadi, T.S., Wang, Z.L., Green, T.C., Henglein, A., El-Sayed, M.A.: Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272(5270), 1924–1925 (1996)

    Article  CAS  Google Scholar 

  2. Ai, J., Jin, R., Liu, Z., Jiang, J., Yuan, S., Huang, G., Li, N., Li, X.: Three-dimensionally ordered macroporous FeP self-supported structure for high-efficiency hydrogen evolution reaction. Int. J. Hydrogen Energy 44(12), 5854–5862 (2019)

    Article  CAS  Google Scholar 

  3. Anantharaj, S., Ede, S.R., Karthick, K., Sankar, S.S., Sangeetha, K., Karthik, P.E., Kundu, S.: Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ. Sci. 11(4), 744–771 (2018)

    Article  CAS  Google Scholar 

  4. Appel, A.M., Helm, M.L.: Determining the overpotential for a molecular electrocatalyst. 630–633 (2014)

    Google Scholar 

  5. Arico, A.S., Srinivasan, S., Antonucci, V.: DMFCs: from fundamental aspects to technology development. Fuel cells 1(2), 133–161 (2001)

    Article  CAS  Google Scholar 

  6. Bandal, H.A., Jadhav, A.R., Tamboli, A.H., Kim, H.: Bimetallic iron cobalt oxide self-supported on Ni-Foam: an efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reaction. Electrochim. Acta 249, 253–262 (2017)

    Article  CAS  Google Scholar 

  7. Cao, S., Wu, Z., Fu, B., Yu, H., Piao, L.: Polymerization pyrolysis derived self-supported Mo-Ni-O electrocatalyst for oxygen evolution. Catal. Today 330, 246–251 (2019)

    Article  CAS  Google Scholar 

  8. Capellán-Pérez, I., Mediavilla, M., de Castro, C., Carpintero, Ó., Miguel, L.J.: Fossil fuel depletion and socio-economic scenarios: an integrated approach. Energy 77, 641–666 (2014)

    Article  Google Scholar 

  9. Chen, L., Zang, J., Liu, X., Zhang, Y., Jia, S., Tian, P., Wang, Y.: A self-supporting graphene supported cobalt hydroxide for enhanced oxygen evolution catalysis. Electrochim. Acta 281, 386–393 (2018)

    Article  CAS  Google Scholar 

  10. Choi, J., Kim, J., Wagner, P., Gambhir, S., Jalili, R., Byun, S., Sayyar, S., Lee, Y.M., MacFarlane, D.R., Wallace, G.G., Officer, D.L.: Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel. Energy Environ. Sci. 12(2), 747–755 (2019)

    Article  CAS  Google Scholar 

  11. Choi, W.S., Jang, M.J., Park, Y.S., Lee, K.H., Lee, J.Y., Seo, M.H., Choi, S.M.: Three-dimensional honeycomb-like Cu0.81Co2.19O4 nanosheet arrays supported by Ni foam and their high efficiency as oxygen evolution electrodes. ACS Appl. Mater. Interfaces 10(45), 38663–38668 (2018)

    Article  CAS  Google Scholar 

  12. Debe, M.K.: Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401), 43 (2012)

    Article  CAS  Google Scholar 

  13. Dincer, I.: Renewable energy and sustainable development: a crucial review. Renew. Sustain. Energy Rev. 4(2), 157–175 (2000)

    Article  Google Scholar 

  14. Dong, X.C., Xu, H., Wang, X.W., Huang, Y.X., Chan-Park, M.B., Zhang, H., Wang, L.H., Huang, W., Chen, P.: 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6(4), 3206–3213 (2012)

    Article  CAS  Google Scholar 

  15. Edwards, P.P., Kuznetsov, V.L., David, W.I., Brandon, N.P.: Hydrogen and fuel cells: towards a sustainable energy future. Energy policy 36(12), 4356–4362 (2008)

    Article  Google Scholar 

  16. Eftekhari, A.: Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy 42(16), 11053–11077 (2017)

    Article  CAS  Google Scholar 

  17. Ellis, B.L., Knauth, P., Djenizian, T.: Three-dimensional self-supported metal oxides for advanced energy storage. Adv. Mater. 26(21), 3368–3397 (2014)

    Article  CAS  Google Scholar 

  18. Fletcher, S.: Tafel slopes from first principles. J. Solid State Electrochem. 13(4), 537–549 (2009)

    Article  CAS  Google Scholar 

  19. Fu, S., Zhu, C., Song, J., Engelhard, M.H., He, Y., Du, D., Wang, C., Lin, Y.: Three-dimensional PtNi hollow nanochains as an enhanced electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 4(22), 8755–8761 (2016)

    Article  CAS  Google Scholar 

  20. Ge, K., Zeng, Y., Dong, G., Zhao, L., Wang, Z., Huang, M.: 3D self-standing grass-like cobalt phosphide vesicles-decorated nanocones grown on Ni-foam as an efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy (2019)

    Google Scholar 

  21. Godínez-Salomón, F., Albiter, L., Alia, S.M., Pivovar, B.S., Camacho-Forero, L.E., Balbuena, P.B., Mendoza-Cruz, R., Arellano-Jimenez, M.J., Rhodes, C.P.: Self-supported hydrous iridium–nickel oxide two-dimensional nanoframes for high activity oxygen evolution electrocatalysts. ACS Catal 8(11), 10498–10520 (2018)

    Article  CAS  Google Scholar 

  22. Guo, M., Zhou, L., Li, Y., Zheng, Q., Xie, F., Lin, D.: Unique nanosheet-nanowire structured CoMnFe layered triple hydroxide arrays as self-supporting electrodes for high-efficiency oxygen evolution reaction. J. Mater. Chem. A (2019)

    Google Scholar 

  23. Guo, Y., Guo, D., Ye, F., Wang, K., Shi, Z., Chen, X., Zhao, C.: Self-supported NiSe2 nanowire arrays on carbon fiber paper as efficient and stable electrode for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 6(9), 11884–11891 (2018)

    Article  CAS  Google Scholar 

  24. Hansen, J., Sato, M., Ruedy, R., Lacis, A., Oinas, V.: Global warming in the twenty-first century: an alternative scenario. Proc. Natl. Acad. Sci. 97(18), 9875–9880 (2000)

    Article  CAS  Google Scholar 

  25. He, G., Tang, H., Wang, H., Bian, Z.: Highly selective and active Pd-In/three-dimensional graphene with special structure for electroreduction CO2 to formate. Electroanalysis 30(1), 84–93 (2018)

    Article  CAS  Google Scholar 

  26. Hoel, M., Kverndokk, S.: Depletion of fossil fuels and the impacts of global warming. Resour. Energy Econ. 18(2), 115–136 (1996)

    Article  Google Scholar 

  27. Hong, W., Jian, C., Wang, G., He, X., Li, J., Cai, Q., Wen, Z., Liu, W.: Self-supported nanoporous cobalt phosphosulfate electrodes for efficient hydrogen evolution reaction. Appl. Catal. B Environ. (2019)

    Google Scholar 

  28. Höök, M., Tang, X.: Depletion of fossil fuels and anthropogenic climate change. A review. Energy Policy 52, 797–809 (2013)

    Article  CAS  Google Scholar 

  29. Herranz, J., Durst, J., Fabbri, E., Patru, A., Cheng, X., Permyakova, A.A., Schmidt, T.J.: Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO2-reduction reactions for (co-) electrolyzer development. Nano Energy 29, 4–28 (2016)

    Article  CAS  Google Scholar 

  30. Iwasita, T.: Electrocatalysis of methanol oxidation. Electrochim. Acta 47(22–23), 3663–3674 (2002)

    Article  CAS  Google Scholar 

  31. Jadhav, H.S., Roy, A., Thorat, G.M., Chung, W.J., Seo, J.G.: Hierarchical free-standing networks of MnCo2S4 as efficient electrocatalyst for oxygen evolution reaction. J. Ind. Eng. Chem. 71, 452–459 (2019)

    Article  CAS  Google Scholar 

  32. Ji, L., Zhu, L., Wang, J., Chen, Z.: Self-supported CuS nanowire array: an efficient hydrogen-evolving electrode in neutral media. Electrochim. Acta 252, 516–522 (2017)

    Article  CAS  Google Scholar 

  33. Jia, D., Gao, H., Xing, L., Chen, X., Dong, W., Huang, X., Wang, G.: 3D self-supported porous NiO@NiMoO4 core-shell nanosheets for highly efficient oxygen evolution reaction. Inorg. Chem. (2019). https://doi.org/10.1021/acs.inorgchem.9b00162

    Article  Google Scholar 

  34. Jiang, Y.F., Yuan, C.Z., Zhou, X., Liu, Y.N., Zhao, Z.W., Zhao, S.J., Xu, A.W.: Selenium phosphorus co-doped cobalt oxide nanosheets anchored on Co foil: a self-supported and stable bifunctional electrode for efficient electrochemical water splitting. Electrochim. Acta 292, 247–255 (2018)

    Article  CAS  Google Scholar 

  35. Jin, M., Zhang, H., Xie, Z., Xia, Y.: Palladium nanocrystals enclosed by 100 and 111 facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 5(4), 6352–6357 (2012)

    Article  CAS  Google Scholar 

  36. Jones, J.P., Prakash, G.S., Olah, G.A.: Electrochemical CO2 reduction: recent advances and current trends. Isr. J. Chem. 54(10), 1451–1466 (2014)

    Article  CAS  Google Scholar 

  37. Kas, R., Hummadi, K.K., Kortlever, R., De Wit, P., Milbrat, A., Luiten-Olieman, M.W., Benes, N.E., Koper, M.T., Mul, G.: Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction. Nat. Commun. 7, 10748 (2016)

    Article  CAS  Google Scholar 

  38. Khatavkar, S.N., Ukale, D.U., Haram, S.K.: Development of self-supported 3D microporous solder alloy electrodes for scalable CO2 electroreduction to formate. New J. Chem. 43, 6587–6596 (2019)

    Article  CAS  Google Scholar 

  39. Kong, D., Cha, J.J., Wang, H., Lee, H.R., Cui, Y.: First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6(12), 3553–3558 (2013)

    Article  CAS  Google Scholar 

  40. Ledezma-Yanez, I., Wallace, W.D.Z., Sebastián-Pascual, P., Climent, V., Feliu, J.M., Koper, M.T.: Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2(4), 17031 (2017)

    Article  CAS  Google Scholar 

  41. Lee, H., Kim, Y.J., Lee, D.J., Song, J., Lee, Y.M., Kim, H.T., Park, J.K.: Directly grown Co3O4 nanowire arrays on Ni-foam: structural effects of carbon-free and binder-free cathodes for lithium–oxygen batteries. J. Mater. Chem. A 2(30), 11891–11898 (2014)

    Article  CAS  Google Scholar 

  42. Li, C., Tan, H., Lin, J., Luo, X., Wang, S., You, J., Kang, Y.M., Bando, Y., Yamauchi, Y., Kim, J.: Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today (2018)

    Google Scholar 

  43. Li, W., Xiong, D., Gao, X., Song, W.G., Xia, F., Liu, L.: Self-supported Co-Ni-P ternary nanowire electrodes for highly efficient and stable electrocatalytic hydrogen evolution in acidic solution. Catal. Today 287, 122–129 (2017)

    Article  CAS  Google Scholar 

  44. Liang, H.P., Zhang, H.M., Hu, J.S., Guo, Y.G., Wan, L.J., Bai, C.L.: Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. Angew. Chem. Int. Ed. 43(12), 1540–1543 (2004)

    Article  CAS  Google Scholar 

  45. Lin, G., Ma, R., Zhou, Y., Hu, C., Yang, M., Liu, Q., Kaskel, S., Wang, J.: Three-dimensional interconnected nitrogen-doped mesoporous carbons as active electrode materials for application in electrocatalytic oxygen reduction and supercapacitors. J. Colloid Interface Sci. 527, 230–240 (2018)

    Article  CAS  Google Scholar 

  46. Lipkowski, J., Ross, P.N. (eds.): Electrocatalysis (vol. 3). Wiley (1998)

    Google Scholar 

  47. Liu, H., Ma, X., Rao, Y., Liu, Y., Liu, J., Wang, L., Wu, M.: Heteromorphic NiCo2S4/Ni3S2/Ni foam as a self-standing electrode for hydrogen evolution reaction in alkaline solution. ACS Appl. Mater. Interfaces 10(13), 10890–10897 (2018)

    Article  CAS  Google Scholar 

  48. Liu, J., Zhu, D., Zheng, Y., Vasileff, A., Qiao, S.Z.: Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal. 8(7), 6707–6732 (2018)

    Article  CAS  Google Scholar 

  49. Liu, Z., Ling, X.Y., Su, X., Lee, J.Y.: Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J. Phys. Chem. B 108(24), 8234–8240 (2004)

    Article  CAS  Google Scholar 

  50. Lu, Q., Jiao, F.: (b). Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 29, 439–456 (2016)

    Article  CAS  Google Scholar 

  51. Lu, X., Zhao, C.: Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 6, 6616 (2015)

    Article  CAS  Google Scholar 

  52. Lu, Y., Du, S., Steinberger-Wilckens, R.: Three-dimensional catalyst electrodes based on PtPd nanodendrites for oxygen reduction reaction in PEFC applications. Appl. Catal. B 187, 108–114 (2016)

    Article  CAS  Google Scholar 

  53. Lv, W., Zhang, R., Gao, P., Lei, L.: Studies on the faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode. J. Power Sources 253, 276–281 (2014)

    Article  CAS  Google Scholar 

  54. Ma, S., Yuan, H., Cai, L., Wang, X., Long, H., Chai, Y., Tsang, Y.H.: One step synthesis of Fe4. 4Ni17. 6Se16 coupled NiSe foam as self-supported, highly efficient and durable oxygen evolution electrode. Mater. Today Chem. 9, 133–139 (2018)

    Article  CAS  Google Scholar 

  55. Ma, T.Y., Dai, S., Qiao, S.Z.: Self-supported electrocatalysts for advanced energy conversion processes. Mater. Today 19(5), 265–273 (2016)

    Article  CAS  Google Scholar 

  56. Maiti, K., Balamurugan, J., Gautam, J., Kim, N.H., Lee, J.H.: Hierarchical flowerlike highly synergistic three-dimensional iron tungsten oxide nanostructure-anchored nitrogen-doped graphene as an efficient and durable electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 10(38), 32220–32232 (2018)

    Article  CAS  Google Scholar 

  57. Murthy, A.P., Madhavan, J., Murugan, K.: Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media. J. Power Sources 398, 9–26 (2018)

    Article  CAS  Google Scholar 

  58. Neyerlin, K.C., Gu, W., Jorne, J., Gasteiger, H.A.: Study of the exchange current density for the hydrogen oxidation and evolution reactions. J. Electrochem. Soc. 154(7), B631–B635 (2007)

    Article  CAS  Google Scholar 

  59. Panwar, N.L., Kaushik, S.C., Kothari, S.: Role of renewable energy sources in environmental protection: a review. Renew. Sustain. Energy Rev. 15(3), 1513–1524 (2011)

    Article  Google Scholar 

  60. Ren, H., Huang, Z.H., Yang, Z., Tang, S., Kang, F., Lv, R.: Facile synthesis of free-standing nickel chalcogenide electrodes for overall water splitting. J. Energy Chem. 26(6), 1217–1222 (2017)

    Article  Google Scholar 

  61. Ren, X., Wu, D., Ge, R., Sun, X., Ma, H., Yan, T., Zhang, Y., Du, B., Wei, Q., Chen, L.: Self-supported CoMoS4 nanosheet array as an efficient catalyst for hydrogen evolution reaction at neutral pH. Nano Res. 11(4), 2024–2033 (2018)

    Article  CAS  Google Scholar 

  62. Sawant, S., Han, T., Cho, M.: Metal-free carbon-based materials: promising electrocatalysts for oxygen reduction reaction in microbial fuel cells. Int. J. Mol. Sci. 18(1), 25 (2016)

    Article  CAS  Google Scholar 

  63. Shao, M., Odell, J.H., Choi, S.I., Xia, Y.: Electrochemical surface area measurements of platinum-and palladium-based nanoparticles. Electrochem. Commun. 31, 46–48 (2013)

    Article  CAS  Google Scholar 

  64. Strmcnik, D., Lopes, P.P., Genorio, B., Stamenkovic, V.R., Markovic, N.M.: Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29–36 (2016)

    Article  CAS  Google Scholar 

  65. Su, F., Zhao, X.S., Wang, Y., Zeng, J., Zhou, Z., Lee, J.Y.: Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications. J. Phys. Chem. B 109(43), 20200–20206 (2005)

    Article  CAS  Google Scholar 

  66. Suen, N.T., Hung, S.F., Quan, Q., Zhang, N., Xu, Y.J., Chen, H.M.: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017)

    Article  CAS  Google Scholar 

  67. Sun, Y., Xia, Y.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601), 2176–2179 (2002)

    Article  CAS  Google Scholar 

  68. Tang, Y., Cheng, W.: Key parameters governing metallic nanoparticle electrocatalysis. Nanoscale 7(39), 16151–16164 (2015)

    Article  CAS  Google Scholar 

  69. Tao, H., Sun, Z.: Oxygen electrochemistry on two-dimensional nanosheets. Nanotechnol. Res. J. 9(3), 361–388 (2016)

    CAS  Google Scholar 

  70. Tao, H., Gao, Y., Talreja, N., Guo, F., Texter, J., Yan, C., Sun, Z.: Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. J. Mater. Chem. A 5(16), 7257–7284 (2017)

    Article  CAS  Google Scholar 

  71. Thi, M.L.N., Tran, T.H., Anh, P.H., Nhac-Vu, H.T., Bui, Q.B.: Hierarchical zinc-nickel phosphides nanosheets on 3D nickel foam as self-support electrocatalysts for hydrogen evolution reaction. Polyhedron (2019)

    Google Scholar 

  72. Tolmachev, Y.V., Petrii, O.A.: Pt–Ru electrocatalysts for fuel cells: developments in the last decade. J. Solid State Electrochem. 21(3), 613–639 (2017)

    Article  CAS  Google Scholar 

  73. Tong, S., Xu, Y., Zhang, Z., Song, W.: Dendritic bimetallic nanostructures supported on self-assembled titanate films for sensor application. J. Phys. Chem. C 114(49), 20925–20931 (2010)

    Article  CAS  Google Scholar 

  74. Trasatti, S.: Electrocatalysis: understanding the success of DSA®. Electrochim. Acta 45(15–16), 2377–2385 (2000)

    Article  CAS  Google Scholar 

  75. Vij, V., Sultan, S., Harzandi, A.M., Meena, A., Tiwari, J.N., Lee, W.G., Yoon, T., Kim, K.S.: Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 7(10), 7196–7225 (2017)

    Article  CAS  Google Scholar 

  76. Wang, J., Zhu, H., Chen, J., Zhang, B., Zhang, M., Wang, L., Du, M.: Small and well-dispersed Cu nanoparticles on carbon nanofibers: self-supported electrode materials for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 41(40), 18044–18049 (2016)

    Article  CAS  Google Scholar 

  77. Wang, K., Chen, H., Hua, Y., Tong, Y., Wang, Y., Song, S.: Layer-stacking porous WCx nanoparticles on carbon cloth as self-supported integrated electrode for hydrogen evolution reaction. Mater. Today Energy 10, 343–351 (2018)

    Article  Google Scholar 

  78. Wang, L., Zhang, J., Jiang, W., Zhao, H., Liu, H.: Free-standing, flexible β-Ni (OH) 2/electrochemically-exfoliated graphene film electrode for efficient oxygen evolution. Appl. Surf. Sci. 433, 88–93 (2018)

    Article  CAS  Google Scholar 

  79. Wang, M., Ye, C., Xu, M., Bao, S.: MoP nanoparticles with a P-rich outermost atomic layer embedded in N-doped porous carbon nanofibers: self-supported electrodes for efficient hydrogen generation. Nano Res. 11(9), 4728–4734 (2018)

    Article  CAS  Google Scholar 

  80. Wu, B., Zheng, N.: Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8(2), 168–197 (2013)

    Article  CAS  Google Scholar 

  81. Wu, J., Liu, M., Sharma, P.P., Yadav, R.M., Ma, L., Yang, Y., Zou, X., Zhou, X.D., Vajtai, R., Yakobson, B.I., Lou, J.: Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett. 16(1), 466–470 (2015)

    Article  CAS  Google Scholar 

  82. Xia, B.Y., Ng, W.T., Wu, H.B., Wang, X., Lou, X.W.: Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells. Angew. Chem. Int. Ed. 51(29), 7213–7216 (2012)

    Article  CAS  Google Scholar 

  83. Xia, C., Jiang, Q., Zhao, C., Hedhili, M.N., Alshareef, H.N.: Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 28(1), 77–85 (2016)

    Article  CAS  Google Scholar 

  84. Xia, H., Huang, Z., Lv, C., Zhang, C.: A self-supported porous hierarchical core-shell nanostructure of cobalt oxide for efficient oxygen evolution reaction. ACS Catal. 7(12), 8205–8213 (2017)

    Article  CAS  Google Scholar 

  85. Xia, Z., Sun, H., He, X., Sun, Z., Lu, C., Li, J., Peng, Y., Kostecki, R., Dou, S., Sun, J., Liu, Z.: In situ construction of CoSe2@ vertical-oriented graphene arrays as self-supporting electrodes for sodium-ion capacitors and electrocatalytic oxygen evolution. Nano Energy (2019)

    Google Scholar 

  86. Xiao, J., Zhang, Y., Zhang, Z., Lv, Q., Jing, F., Chi, K., Wang, S.: Self-supported biocarbon-fiber electrode decorated with molybdenum carbide nanoparticles for highly active hydrogen-evolution reaction. ACS Appl. Mater. Interfaces. 9(27), 22604–22611 (2017)

    Article  CAS  Google Scholar 

  87. Xiong, X., Ji, Y., Xie, M., You, C., Yang, L., Liu, Z., Asiri, A.M., Sun, X.: MnO2-CoP3 nanowires array: an efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity. Electrochem. Commun. 86, 161–165 (2018)

    Article  CAS  Google Scholar 

  88. Xu, Z., Liu, Y., Zhao, W., Li, B., Zhou, X., Shen, H.: Assembling mesoporous ZnxCO3-xO4 fibers with interconnected nanocrystals via a topotactic conversion route for enhanced performance Lithium-ion batteries. Electrochim. Acta 190, 894–902 (2016)

    Article  CAS  Google Scholar 

  89. Yang, C., Gao, M.Y., Zhang, Q.B., Zeng, J.R., Li, X.T., Abbott, A.P.: In-situ activation of self-supported 3D hierarchically porous Ni3S2 films grown on nanoporous copper as excellent pH-universal electrocatalysts for hydrogen evolution reaction. Nano Energy 36, 85–94 (2017)

    Article  CAS  Google Scholar 

  90. Ye, Y.S., Rick, J., Hwang, B.J.: Water soluble polymers as proton exchange membranes for fuel cells. Polymers 4(2), 913–963 (2012)

    Article  CAS  Google Scholar 

  91. You, H., Yang, S., Ding, B., Yang, H.: Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Soc. Rev. 42(7), 2880–2904 (2013)

    Article  CAS  Google Scholar 

  92. Yu, H., Cao, S., Fu, B., Wu, Z., Liu, J., Piao, L.: Self-supported nanotubular MoP electrode for highly efficient hydrogen evolution via water splitting. Catal. Commun. (2019)

    Google Scholar 

  93. Yu, L., Yang, J.F., Guan, B.Y., Lu, Y., Lou, X.W.: Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution. Angew. Chem. Int. Ed. 57(1), 172–176 (2018)

    Article  CAS  Google Scholar 

  94. Yuan, C., Wu, H.B., Xie, Y., Lou, X.W.: Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53(6), 1488–1504 (2014)

    Article  CAS  Google Scholar 

  95. Zeng, M., Li, Y.: Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3(29), 14942–14962 (2015)

    Article  CAS  Google Scholar 

  96. Zhang, C., Pu, Z., Amiinu, I.S., Zhao, Y., Zhu, J., Tang, Y., Mu, S.: CO2P quantum dot embedded N, P dual-doped carbon self-supported electrodes with flexible and binder-free properties for efficient hydrogen evolution reactions. Nanoscale 10(6), 2902–2907 (2018)

    Article  CAS  Google Scholar 

  97. Zhang, J., Dong, C., Wang, Z., Zhang, C., Gao, H., Niu, J., Zhang, Z.: Flexible, self-supported hexagonal β-Co (OH)2 nanosheet arrays as integrated electrode catalyzing oxygen evolution reaction. Electrochim. Acta 284, 495–503 (2018)

    Article  CAS  Google Scholar 

  98. Zhang, L., Chang, Q., Chen, H., Shao, M.: Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 29, 198–219 (2016)

    Article  CAS  Google Scholar 

  99. Zhao, S., Yin, H., Du, L., Yin, G., Tang, Z., Liu, S.: Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. J. Mater. Chem. A 2(11), 3719–3724 (2014)

    Article  CAS  Google Scholar 

  100. Zhou, C., Mu, J., Qi, Y.F., Wang, Q., Zhao, X.J., Yang, E.C.: Iron-substituted Co-Ni phosphides immobilized on Ni foam as efficient self-supported 3D hierarchical electrocatalysts for oxygen evolution reaction. Int. J. Hydrogen Energy (2019)

    Google Scholar 

  101. Zhou, W., Jia, J., Lu, J., Yang, L., Hou, D., Li, G., Chen, S.: Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28, 29–43 (2016)

    Article  CAS  Google Scholar 

  102. Zhou, Y., Hu, X., Guo, S., Yu, C., Zhong, S., Liu, X.: Multi-functional graphene/carbon nanotube aerogels for its applications in supercapacitor and direct methanol fuel cell. Electrochim. Acta 264, 12–19 (2018)

    Article  CAS  Google Scholar 

  103. Zhu, W., Zhang, R., Qu, F., Asiri, A.M., Sun, X.: Design and application of foams for electrocatalysis. ChemCatChem 9(10), 1721–1743 (2017)

    Article  CAS  Google Scholar 

  104. Zhu, X., Mo, L., Wu, Y., Lai, F., Han, X., Ling, X.Y., Liu, T., Miao, Y.E.: Self-supported MoS2@ NHCF fiber-in-tube composites with tunable voids for efficient hydrogen evolution reaction. Compos. Commun. 9, 86–91 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Madhuri .

Editor information

Editors and Affiliations

Ethics declarations

Ms. Karfa has given the major contribution in writing this book chapter along with drawing the figures and tables, taking the copyright permission etc.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karfa, P., Majhi, K.C., Madhuri, R. (2020). Self-supported Electrocatalysts. In: Inamuddin, Boddula, R., Asiri, A. (eds) Self-standing Substrates. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29522-6_6

Download citation

Publish with us

Policies and ethics