Skip to main content

Free-Standing Graphene Materials for Supercapacitors

  • Chapter
  • First Online:
Self-standing Substrates

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Free standing graphene belongs to the pioneering group of carbonaceous nanomaterial and has gained large appreciation in the field storage and conversion of energy. Free standing or self-supported graphene materials are made up of dense graphene sheets arranged in the form of three dimensional structures like foam, films, monoliths, papers, and aerogels with hierarchical porous structure. In last few decades, speedy growth in the binder free graphene based super-capacitors can be credited to their influential properties like flexibility, large surface to volume ratio, high mechanical durability, electrical and thermal conductivity, and light weight. The free standing graphene also delivers us with short and easy diffusion pathway for ions (generated from electrolytes), channels for electron transport and composites with active materials which provide a synergistic effect. This chapter will provide the information about synthesis of free standing graphenes and their recent advancements as the efficient electrode materials for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

AES:

Augar electron spectroscopy

AFM:

Atomic force microscopy

CV:

Cyclic voltammetry

CVE:

Centrifugal vacuum evaporation

CVD:

Chemical vapour deposition

DMF:

Dimethyl formamide

EDLCs:

Electric double layer capacitors

FT-IR:

Fourier transform infrared spectroscopy

FESEM:

Field emission scanning electron microscope

HRTEM:

High resolution transmission electron microscope

MCVD:

Microwave assisted chemical vapour deposition

MS:

Mass spectroscopy

NEC:

Nippon electric company

NMR:

Nuclear magnetic resonance spectroscopy

r-GO:

Reduced Graphene oxide

PANI:

Polyaniline

PL:

Photoluminescence spectroscopy

SC:

Supercapacitors

SIMS:

Secondary ion mass spectrometry

UCs:

Ultracapacitors

XPS:

X-Ray photo electron spectroscopy

XRD:

X-ray diffraction spectroscopy

References

  1. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  2. Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  CAS  Google Scholar 

  3. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)

    Article  CAS  Google Scholar 

  4. Chen, D., Feng, H., Li, J.: Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012)

    Article  CAS  Google Scholar 

  5. Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Yan, Q., Boey, F., Zhang, H.: Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)

    Article  CAS  Google Scholar 

  6. Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., Kim, K.S.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012)

    Article  CAS  Google Scholar 

  7. Bianco, A., Cheng, H.-M., Enoki, T., Gogotsi, Y., Hurt, R.H., Koratkar, N., Kyotani, T.: All in the graphene family–a recommended nomenclature for two-dimensional carbon materials. Carbon 65, 1–6 (2013)

    Article  CAS  Google Scholar 

  8. Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446, 60 (2007)

    Article  CAS  Google Scholar 

  9. Chen, C., Yang, Q.-H., Yang, Y., Lv, W., Wen, Y., Hou, P.-X., Wang, M., Cheng, H.-M.: Self-assembled free-standing graphite oxide membrane. Adv. Mater. 21, 3007–3011 (2009)

    Article  CAS  Google Scholar 

  10. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  CAS  Google Scholar 

  11. Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: a review. Crit. Rev. Solid State 35, 52–71 (2010)

    Article  CAS  Google Scholar 

  12. Wei, D., Liu, Y.: Controllable synthesis of graphene and its applications. Adv. Mater. 22, 3225–3241 (2010)

    Article  CAS  Google Scholar 

  13. Zhang, Y.I., Zhang, L., Zhou, C.: Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2329–2339 (2013)

    Article  CAS  Google Scholar 

  14. Tang, L., Li, X., Ji, R., Teng, K.S., Tai, G., Ye, J., Wei, C., Lau, S.P.: Bottom-up synthesis of large-scale graphene oxide nanosheets. J. Mater. Chem. 22, 5676–5683 (2012)

    Article  CAS  Google Scholar 

  15. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2008)

    Article  CAS  Google Scholar 

  16. Gass, M.H., Bangert, U., Bleloch, A.L., Wang, P., Nair, R.R., Geim, A.K.: Free-standing graphene at atomic resolution. Nat. Nanotechnol. 3, 676 (2008)

    Article  CAS  Google Scholar 

  17. Teng, M., Liu, Z., Wen, J., Gao, Y., Ren, X., Chen, H., Jin, C.: Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nat. Commun. 8, 14486 (2017)

    Google Scholar 

  18. Hu, D., Gong, W., Di, J., Li, D., Li, R., Lu, W., Gu, B., Sun, B., Li, Q.: Strong graphene-interlayered carbon nanotube films with high thermal conductivity. Carbon 118, 659–665 (2017)

    Article  CAS  Google Scholar 

  19. Chen, K., Chen, L., Chen, Y., Bai, H., Li, L.: Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application. J. Mater. Chem. 22, 20968–20976 (2012)

    Article  CAS  Google Scholar 

  20. Yin, S., Wu, Y.‐L., Hu, B., Wang, Y., Cai, P., Tan, C.K., Qi, D.: Three‐dimensional graphene composite macroscopic structures for capture of cancer cells. Adv. Mater. Interfaces 1, 300043 (2014)

    Article  CAS  Google Scholar 

  21. Zhang, S., Li, Y., Pan, N.: Graphene based supercapacitor fabricated by vacuum filtration deposition. J. Power Sources 206, 476–482 (2012)

    Article  CAS  Google Scholar 

  22. Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448, 457 (2007)

    Article  CAS  Google Scholar 

  23. Li, D., Müller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101 (2008)

    Article  CAS  Google Scholar 

  24. Liu, F., Chung, S., Oh, G., Seo, T.S.: Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl. Mater. Interfaces 4, 922–927 (2012)

    Article  CAS  Google Scholar 

  25. Zhang, W., Zhu, J., Ang, H., Zeng, Y., Xiao, N., Gao, Y., Liu, W., Hng, H.H., Yan, Q.: Binder-free graphene foams for O2 electrodes of Li-O2 batteries. Nanoscale 5, 9651–9658 (2013)

    Article  CAS  Google Scholar 

  26. Zhao, X., Jia, Y., Liu, Z.-H.: GO-graphene ink-derived hierarchical 3D-graphene architecture supported Fe3O4 nanodots as high-performance electrodes for lithium/sodium storage and supercapacitors. J. Colloid Interface Sci. 536, 463–473 (2019)

    Article  CAS  Google Scholar 

  27. Wang, Y., Jin, Y., Zhao, C., Pan, E., Jia, M.: 3D graphene aerogel wrapped 3D flower-like Fe3O4 as a long stable and high rate anode material for lithium ion batteries‎J. Electroanal. Chem. 830, 106–115 (2018)

    Article  CAS  Google Scholar 

  28. Pan, E., Jin, Y., Wang, Y., Zhao, C., Bo, X., Jia, M.: Facile synthesis of mesoporous 3D CoO/nitrogen-doped graphene aerogel as high-performance anode materials for lithium storage. Microporous and Mesoporous Mater. 267, 93–99 (2018)

    Article  CAS  Google Scholar 

  29. Jiang, L., Ren, Z., Chen, S., Zhang, Q., Lu, X., Zhang, H., Wan, G.: Bio-derived three-dimensional hierarchical carbon-graphene-TiO2 as electrode for supercapacitors. Sci. Rep. 8, 4412 (2018)

    Google Scholar 

  30. Wu, P., Wang, D., Ning, J., Zhang, J., Feng, X., Dong, J., Hao, Y.: Novel 3D porous graphene/Ni3S2 nanostructures for high-performance supercapacitor electrodes. J. Alloy. Compd. 731, 1063–1068 (2018)

    Article  CAS  Google Scholar 

  31. Foroutan, M., Naji, L.: Systematic evaluation of factors influencing electrochemical and morphological characteristics of free-standing 3D graphene hydrogels as electrode material for supercapacitors. Electrochim. Acta 301, 421–435 (2019)

    Article  CAS  Google Scholar 

  32. Sun, S., Wang, P., Wang, S., Wu, Q., Fang, S.: Fabrication of MnO2/nanoporous 3D graphene for supercapacitor electrodes. Mater. Lett. 145, 141–144 (2015)

    Article  CAS  Google Scholar 

  33. Zhang, H., Deng, X., Huang, H., Li, G., Liang, X., Zhou, W., Guo, J., Wei, W., Tang, S.: Hetero-structure arrays of NiCoO2 nanoflakes@nanowires on 3D graphene/nickel foam for high-performance supercapacitors. Electrochim. Acta 289, 193–203 (2018)

    Article  CAS  Google Scholar 

  34. Zhang, L., Zhao, Z., Xia, T., Zhang, S., Li, X., Zhang, A.: Anchoring Bi2WO6 nanoparticles on 3D graphene frameworks for enhanced lithium storage. Mater. Lett. 210, 345–349 (2018)

    Article  CAS  Google Scholar 

  35. Bandyopadhyay, P., Li, X., Kim, N.H., Lee, J.H.: Graphitic carbon nitride modified graphene/NiAl layered double hydroxide and 3D functionalized graphene for solid-state asymmetric supercapacitors. Chem. Eng. J. 353, 824–838 (2018)

    Article  CAS  Google Scholar 

  36. Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., Yao, J.: Facile synthesis and characterization of graphene nanosheetsJ. J. Phys. Chem. A 112, 8192–8195 (2008)

    CAS  Google Scholar 

  37. Liu, C., Li, F., Ma, L.-P., Cheng, H.-M.: Advanced materials for energy storage. Adv. Mater. 22, E28–E62 (2010)

    Article  CAS  Google Scholar 

  38. Nikolaidis, P., Poullikkas, A.: A comparative review of electrical energy storage systems for better sustainability. J. Power Technol. 97, 220–245 (2017)

    CAS  Google Scholar 

  39. Wang, G., Zhang, L., Zhang, J.: A review of electrode materials for electrochemical supercapacitors. ‎Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  Google Scholar 

  40. Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., Zhang, J.: A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)

    Article  CAS  Google Scholar 

  41. Kasana, V.K., Kumar, Y., Singh, P., Dixit, S.: Experimental studies on poly (3-hexylthiophene) electrode based supercapacitors: a comparison of electrolytic species (2016)

    Google Scholar 

  42. Becker, H.I.: Low voltage electrolytic capacitor. U.S. Patent 2,800,616, issued July 23 (1957)

    Google Scholar 

  43. Lee, H.Y., Goodenough, J.B.: Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220–223 (1999)

    Article  CAS  Google Scholar 

  44. Endo, M., Takeda, T., Kim, Y.J., Koshiba, K., Ishii, K.: High power electric double layer capacitor (EDLC’s); from operating principle to pore size control in advanced activated carbons. Carbon Lett. 1, 117–128 (2001)

    Google Scholar 

  45. Lim, Y.S., Tan, Y.P., Lim, H.N., Huang, N.M., Tan, W.T., Yarmo, M.A., Yin, C.-Y.: Potentiostatically deposited polypyrrole/graphene decorated nano-manganese oxide ternary film for supercapacitors. Ceram. Int. 40, 3855–3864 (2014)

    Article  CAS  Google Scholar 

  46. Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)

    Article  CAS  Google Scholar 

  47. Wang, Y., Chen, J., Cao, J., Liu, Y., Zhou, Y., Ouyang, J.-H., Jia, D.: Graphene/carbon black hybrid film for flexible and high rate performance supercapacitor. J. Power Sources 271, 269–277 (2014)

    Article  CAS  Google Scholar 

  48. Cheng, H., Dong, Z., Hu, C., Zhao, Y., Hu, Y., Qu, L., Chen, N., Dai, L.: Textile electrodes woven by carbon nanotube–graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale 5, 3428–3434 (2013)

    Article  CAS  Google Scholar 

  49. Gao, H., Xiao, F., Ching, C.B., Duan, H.: Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. ACS Appl. Mater. Interfaces 4, 7020–7026 (2012)

    Article  CAS  Google Scholar 

  50. Yang, C., Shen, J., Wang, C., Fei, H., Bao, H., Wang, G.: All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes. J. Mater. Chem. A 2, 1458–1464 (2014)

    Article  CAS  Google Scholar 

  51. He, Y., Chen, W., Li, X., Zhang, Z., Fu, J., Zhao, C., Xie, E.: Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7, 174–182 (2012)

    Article  CAS  Google Scholar 

  52. Wang, Z., Zhang, Q.E., Long, S., Luo, Y., Yu, P., Tan, Z., Bai, J.: Three-dimensional printing of polyaniline/reduced graphene oxide composite for high-performance planar supercapacitor. ACS Appl. Mater. Interfaces 10, 10437–10444 (2018)

    Article  CAS  Google Scholar 

  53. Wu, C.H., Deng, S.X., Wang, H., Sun, Y.X., Liu, J.B., Yan, H.: Preparation of novel three-dimensional NiO/ultrathin derived graphene hybrid for supercapacitor applications. ACS Appl. Mater. Interfaces 6, 1106–1112 (2014)

    Article  CAS  Google Scholar 

  54. Chi, K., Zhang, Z., Xi, J.B., Huang, Y., Xiao, F., Wang, S., Liu, Y.: Freestanding graphene paper supported three-dimensional porous graphene–polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl. Mater. Interfaces 6, 16312–16319 (2014)

    Article  CAS  Google Scholar 

  55. Zhang, C., Huang, Y., Tang, S., Deng, M., Du, Y.: High-energy all-solid-state symmetric supercapacitor based on Ni3S2 mesoporous nanosheet-decorated three-dimensional reduced graphene oxide. ACS Energy Lett. 2, 759–768 (2017)

    Article  CAS  Google Scholar 

  56. Foo, C.Y., Lim, H.N., Mahdi, M.A.B., Chong, K.F., Huang, N.M.: High-performance supercapacitor based on three-dimensional hierarchical r-go/nickel cobaltite nanostructures as electrode materials. J. Phys. Chem. A 120, 21202–21210 (2016)

    Article  CAS  Google Scholar 

  57. Zhang, J., Ding, J., Li, C., Li, B., Li, D., Liu, Z., Cai, Q., Zhang, J., Liu, Y.: Fabrication of novel ternary three-dimensional RuO2/graphitic-C3N4@ reduced graphene oxide aerogel composites for supercapacitors. ACS Sustain. Chem. Eng. 5, 4982–4991 (2017)

    Article  CAS  Google Scholar 

  58. Ye, S., Feng, J.: Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors. ACS Appl. Mater. Interfaces 6, 9671–9679 (2014)

    Article  CAS  Google Scholar 

  59. Liu, Y., Zhou, J., Tang, J., Tang, W.: Three-dimensional, chemically bonded polypyrrole/bacterial cellulose/graphene composites for high-performance supercapacitors. Chem. Mater. 27, 7034–7041 (2015)

    Article  CAS  Google Scholar 

  60. Ouyang, Y., Xia, X., Ye, H., Wang, L., Jiao, X., Lei, W., Hao, Q.: Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. ACS Appl. Mater. Interfaces 104, 3549–3561 (2018)

    Article  CAS  Google Scholar 

  61. Qu, L., Zhao, Y., Khan, A.M., Han, C., Hercule, K.M., Yan, M., Liu, X.: Interwoven three-dimensional architecture of cobalt oxide nanobrush-Graphene@NixCo2x(OH)6x for high-performance supercapacitors. Nano Lett. 15, 2037–2044 (2015)

    Article  CAS  Google Scholar 

  62. Hu, N., Huang, L., Gong, W., Shen, P.K.: High-Performance Asymmetric supercapacitor based on hierarchical NiMn2O4@ CoS core–shell microspheres and stereotaxically constricted graphene. ACS Sustain. Chem. Eng. 6, 16933–16940 (2018)

    Article  CAS  Google Scholar 

  63. Cao, X., Yin, Z., Zhang, H.: Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ. Sci. 7, 1850–1865 (2014)

    Article  CAS  Google Scholar 

  64. Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011)

    Article  CAS  Google Scholar 

  65. Xia, X.H., Chao, D.L., Zhang, Y.Q., Shen, Z.X., Fan, H.J.: Three-dimensional graphene and their integrated electrodes. Nano Today 9, 785–807 (2014)

    Article  CAS  Google Scholar 

  66. Yao, X., Zhao, Y.: Three-dimensional porous graphene networks and hybrids for lithium-ion batteries and supercapacitors. Chem. Rev. 2, 171–200 (2017)

    CAS  Google Scholar 

  67. Manjakkal, L., Núñez, C.G., Dang, W., Dahiya, R.: Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy 51, 604–612 (2018)

    Article  CAS  Google Scholar 

  68. Ping, Y., Gong, Y., Fu, Q., Pan, C.: Preparation of three-dimensional graphene foam for high performance supercapacitors. Progress Natl. Sci. Mater. Int. 27, 177–181 (2017)

    Article  CAS  Google Scholar 

  69. Down, M.P., Banks, C.E.: Freestanding three-dimensional graphene macroporous supercapacitor. ACS Appl. Energy Mater. 1, 891–899 (2018)

    Article  CAS  Google Scholar 

  70. Garakani, M.A., Abouali, S., Xu, Z.-L., Huang, J., Huang, J.-Q., Kim, J.-K.: Heterogeneous, mesoporous NiCo2O4-MnO2/graphene foam for asymmetric supercapacitors with ultrahigh specific energies. J. Mater. Chem. A 5, 3547–3557 (2017)

    Article  CAS  Google Scholar 

  71. Qian, Y., Cai, X., Zhang, C., Jiang, H., Zhou, L., Li, B., Lai, L.: A free-standing Li4Ti5 O12/graphene foam composite as anode material for Li-ion hybrid supercapacitor. Electrochim. Acta 258, 1311–1319 (2017)

    Article  CAS  Google Scholar 

  72. Ghosh, K., Yue, C.Y., Sk, M.M., Jena, R.K.: Development of 3D urchin-shaped coaxial manganese dioxide@polyaniline (MnO2@PANI) composite and self-assembled 3D pillared graphene foam for asymmetric all-solid-state flexible supercapacitor application. ACS Appl. Mater. Interfaces 9, 15350–15363 (2017)

    Article  CAS  Google Scholar 

  73. Latil, S., Henrard, L.: Charge carriers in few-layer graphene films. Phys. Rev. Lett. 97, 036803 (2006)

    Article  CAS  Google Scholar 

  74. Zhao, Y., Liu, J., Wang, B., Sha, J., Li, Y., Zheng, D., Amjadipour, M., MacLeod, J., Motta, N.: Supercapacitor electrodes with remarkable specific capacitance converted from hybrid graphene oxide/NaCl/Urea films. ACS Appl. Mater. Interfaces 9, 22588–22596 (2017)

    Article  CAS  Google Scholar 

  75. Dou, Y., Min, L.U.O., Liang, S., Zhang, X., Ding, X., Liang, B.: Flexible free-standing graphene-like film electrode for supercapacitors by electrophoretic deposition and electrochemical reduction. Trans. Nonferr. Metal Soc. China 24, 1425–1433 (2014)

    Article  CAS  Google Scholar 

  76. Chao, Y., Chen, S., Chen, H., Hu, X., Ma, Y., Gao, W., Bai, Y.: Densely packed porous graphene film for high volumetric performance supercapacitor. Electrochim. Acta 276, 118–124 (2018)

    Article  CAS  Google Scholar 

  77. Jia, Y., Zhou, L., Shao, J.: Direct synthesis of graphene-based hybrid films as flexible supercapacitor electrodes. Synth. Met. 244, 99–105 (2018)

    Article  CAS  Google Scholar 

  78. Chen, J., Guo, Y., Huang, L., Xue, Y., Geng, D., Liu, H., Wu, B.: Controllable fabrication of ultrathin free-standing graphene films. Phil. Trans. R. Soc. A 372 (2014). https://doi.org/10.1098/rsta.2013.0017

    Article  CAS  Google Scholar 

  79. Xiong, D., Li, X., Bai, Z., Li, J., Shan, H., Fan, L., Long, C., Li, D., Lu, X.: Rational design of hybrid Co3O4/graphene films: free-standing flexible electrodes for high performance supercapacitors. Electrochim. Acta 259, 338–347 (2018)

    Article  CAS  Google Scholar 

  80. Zhu, Y., Ye, X., Tang, Z., Wan, Z., Jia, C.: Free-standing graphene films prepared via foam film method for great capacitive flexible supercapacitors. App. Surf. Sci. 422, 975–984 (2017)

    Article  CAS  Google Scholar 

  81. Worsley, M.A., Kucheyev, S.O., Mason, H.E., Merrill, M.D., Mayer, B.P., Lewicki, J., Valdez, C.A.: Mechanically robust 3D graphene macro-assembly with high surface area. Chem. Comm 48, 8428–8430 (2012)

    Article  CAS  Google Scholar 

  82. Li, Y., Chen, J., Huang, L., Li, C., Hong, J.-D., Shi, G.: Highly compressible macroporous graphene monoliths via an improved hydrothermal process. Adv. Mater. 26, 4789–4793 (2014)

    Article  CAS  Google Scholar 

  83. Zou, X., Zhou, Y., Wang, Z., Chen, S., Li, W., Xiang, B., Xu, L., Zhu, S., Hou, J.: Free-standing, layered graphene monoliths for long-life supercapacitor. Chem. Eng. J. 350, 386–394 (2018)

    Article  CAS  Google Scholar 

  84. Wang, X., Ding, Y., Chen, F., Lu, H., Zhan, N., Ma, M.: Hierarchical porous n-doped graphene monoliths for flexible solid-state supercapacitors with excellent cycle stability. ACS Appl. Energy Mater. 1, 5024–5032 (2018)

    Article  CAS  Google Scholar 

  85. Deng, L., Liu, J., Ma, Z., Fan, G., Liu, Z.-H.: Free-standing graphene/bismuth vanadate monolith composite as a binder-free electrode for symmetrical supercapacitors. RSC Adv. 8, 24796–24804 (2018)

    Article  CAS  Google Scholar 

  86. Wen, Y., Rufford, T.E., Hulicova-Jurcakova, D., Wang, L.: Nitrogen and phosphorous co-doped graphene monolith for supercapacitors. Chem. Sus. Chem. 9, 513–520 (2016)

    Article  CAS  Google Scholar 

  87. Yao, H., Zhang, G., Zhang, F., Li, W., Yang, Y., Chen, L.: A novel Ni coordination supramolecular network hybrid monolith of 3D graphene as electrode materials for supercapacitors. Mater. Today Energy 6, 164–172 (2017)

    Article  Google Scholar 

  88. Hu, H., Zhao, Z., Wan, W., Gogotsi, Y., Qiu, J.: Ultralight and highly compressible graphene aerogels. Adv. Mater. 25, 2219–2223 (2013)

    Article  CAS  Google Scholar 

  89. Worsley, M.A., Pauzauskie, P.J., Olson, T.Y., Biener, J., Satcher Jr., J.H., Baumann, T.F.: Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132, 14067–14069 (2010)

    Article  CAS  Google Scholar 

  90. Song, Z., Liu, W., Sun, N., Wei, W., Zhang, Z., Liu, H., Liu, G., Zhao, Z.: One-step self-assembly fabrication of three-dimensional copper oxide/graphene oxide aerogel composite material for supercapacitors. Solid State Commun. 287, 27–30 (2019)

    Article  CAS  Google Scholar 

  91. VanHoa, N., Quyen, T.T.H., Hieu, N.V., Ngoc, T.Q., Thinh, P.V., Dat, P.A., Nguyen, H.T.T.: Three-dimensional reduced graphene oxide-grafted polyaniline aerogel as an active material for high performance supercapacitors. Synth. Met. 223, 192–198 (2017)

    Article  CAS  Google Scholar 

  92. Xing, L.-B., Hou, S.-F., Zhou, J., Zhang, J.-L., Si, W., Dong, Y., Zhuo, S.: Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption. J. Solid State Chem. 230, 224–232 (2015)

    Article  CAS  Google Scholar 

  93. Choi, J., Yang, M.H., Kim, S.-K.: Pseudocapacitive organic catechol derivative-functionalized three-dimensional graphene aerogel hybrid electrodes for high-performance supercapacitors. Appl. Surf. Sci. 422, 316–320 (2017)

    Article  CAS  Google Scholar 

Download references

Author Declaration

Ms. Karfa has given the major contribution in writing this book chapter along with drawing the Figures and Tables, taking the copyright permission etc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Madhuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karfa, P., Majhi, K.C., Madhuri, R. (2020). Free-Standing Graphene Materials for Supercapacitors. In: Inamuddin, Boddula, R., Asiri, A. (eds) Self-standing Substrates. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29522-6_11

Download citation

Publish with us

Policies and ethics