Skip to main content

Impact of Genetics and Production Practices on Tobacco-Specific Nitrosamine Formation

  • Chapter
  • First Online:
Book cover The Tobacco Plant Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Tobacco (Nicotiana tabacum L.) plants biochemically synthesize multiple alkaloid compounds. The predominant compound, nicotine, and other alkaloids in the plant can be nitrosated to form tobacco-specific N-nitrosamines (TSNAs). TSNAs are found in cured tobacco leaf and are created primarily during the curing process. Some TSNAs have been classified by regulatory authorities as human carcinogens. Therefore, the mechanisms associated with TSNA formation in tobacco have long attracted research and industry interest. This chapter describes TSNA formation and factors affecting TSNA levels in tobacco, including alkaloid biosynthesis, nitrite compounds, tobacco type, TSNA formation propensity, environmental conditions, and production practices. It further expounds on the genetic aspects related to TSNA formation and TSNA-mitigation methods, such as the use of low-alkaloid tobacco lines, alteration of gene expression in alkaloid biosynthesis genes and regulatory genes, and nicotine transport mechanisms. Discovery of nicotine demethylase and reductions in N-nitrosonornicotine through down-regulation or knockout of genes encoding nicotine demethylase are described. Research and industry efforts to mitigate TSNA formation in the cured leaf and tobacco products are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams A, Lusso M, Pramod S, Xu D (2016) Compositions and methods for producing tobacco plants and products having altered alkaloid levels. US Patent No. 20160374387/ WO2016210303A1

    Google Scholar 

  • Appleton S, Olegario R, Lipowicz P (2013) TSNA levels in machine-generated mainstream cigarette smoke: 35 years of data. Regul Toxicol Pharmacol 66(2):197–207. https://doi.org/10.1016/j.yrtph.2013.03.013

    Article  CAS  PubMed  Google Scholar 

  • Brunnemann KD, Masaryk J, Hoffmann D (1983) Role of tobacco stems in the formation of N-nitrosamines in tobacco and cigarette mainstream and sidestream smoke. J Agric Food Chem 31(6):1221–1224. https://doi.org/10.1021/jf00120a020

    Article  CAS  Google Scholar 

  • Burton HR, Bush LP, Djordjevic MV (1989) Influence of temperature and humidity on the accumulation of tobacco-specific nitrosamines in stored burley tobacco. J Agric Food Chem 37(5):1372–1377. https://doi.org/10.1021/jf00089a036

    Article  CAS  Google Scholar 

  • Burton HR, Dye NK, Bush, LP (1992) Distribution of tobacco constituents in tobacco leaf tissue. 1. Tobacco-specific nitrosamines, nitrate, nitrite, and alkaloids. J Agric Food Chem 40(6):1050–1055. https://doi.org/10.1021/jf00018a028

  • Burton HR, Dye NK, Bush LP (1994) Relationship between tobacco-specific nitrosamines and nitrite from different air-cured tobacco varieties. J Agric Food Chem 42(9):2007–2011. https://doi.org/10.1021/jf00045a033

    Article  CAS  Google Scholar 

  • Bush L, Cui M, Shi H, Burton H, Fannin F, Lei L, Dye N (2001) Formation of tobacco-specific nitrosamines in air-cured tobacco. Rec Adv Tob Sci 27:23–46

    Google Scholar 

  • Bush L, Hempfling WP, Burton H (1999) Chapter 2: Biosynthesis of nicotine and related compounds. In: Gorrod JW, Jacob P (eds) Analytical determination of nicotine and related compounds and their metabolites. Elsevier Science, Amsterdam, pp 13–44

    Chapter  Google Scholar 

  • Cai B, Jack A, Lewis R, Dewey R, Bush L (2013) (R)-nicotine biosynthesis, metabolism and translocation in tobacco as determined by nicotine demethylase mutants. Phytochemistry 95:188–196. https://doi.org/10.1016/j.phytochem.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  • Cai B, Siminszky B, Chappell J, Dewey R, Bush LP (2012) Enantioselective demethylation of nicotine as a mechanism for variable nornicotine composition in tobacco leaf. J Biol Chem 287(51):42804–42811. https://doi.org/10.1074/jbc.M112.413807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldwell W, Greene J, Plowchalk D, deBethizy J (1991) The nitrosation of nicotine: a kinetic study. Chem Res Toxicol 4(5):513–516

    Article  CAS  Google Scholar 

  • Chaplin JF, Weeks W (1976) Association between percent total alkaloids and other traits in flue-cured tobacco. Crop Sci 16(3):416–418

    Article  CAS  Google Scholar 

  • Cui M, Nielsen M, Hart R, Overbey M, Watson D, Chipley J (2011) Use of chlorate, sulfur or ozone to reduce tobacco specific nitrosamines. US Patent No. 7,992,575 B2

    Google Scholar 

  • Dawson RF (1942) Accumulation of nicotine in reciprocal grafts of tomato and tobacco. Am J Bot 29(1):66–71. https://doi.org/10.2307/2436544

    Article  CAS  Google Scholar 

  • de Roton C, Girard C (2004) Potential changes of TSNA composition in stored tobacco powder: Consequences for sample preparation and ground storage. Paper presented at the CORESTA Congress, Kyoto, Japan, 3–7 Oct 2004

    Google Scholar 

  • de Roton C, Wiernik A, Wahlberg I, Vidal B (2005) Factors influencing the formation of tobacco-specific nitrosamines in French air-cured tobaccos in trials and at the farm level. Beiträge zur Tabakforschung International 21:305–319. https://doi.org/10.2478/cttr-2013-0797

    Article  Google Scholar 

  • DeBoer K, Dalton H, Edward F, Hamill J (2011) RNAi-mediated down-regulation of ornithine decarboxylase (ODC) leads to reduced nicotine and increased anatabine levels in transgenic Nicotiana tabacum L. Phytochemistry 72(4–5):344–355. https://doi.org/10.1016/j.phytochem.2010.12.012

    Article  CAS  PubMed  Google Scholar 

  • DeBoer K, Dalton H, Edward F, Ryan S, Hamill J (2013) RNAi-mediated down-regulation of ornithine decarboxylase (ODC) impedes wound-stress stimulation of anabasine synthesis in Nicotiana glauca. Phytochemistry 86:21–28. https://doi.org/10.1016/j.phytochem.2012.10.016

    Article  CAS  PubMed  Google Scholar 

  • Dewey R, Xie J (2013) Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry 94:10–27. https://doi.org/10.1016/j.phytochem.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  • Djordjevic MV, Gay SL, Bush LP, Chaplin JF (1989) Tobacco-specific nitrosamine accumulation and distribution in flue-cured tobacco alkaloid isolines. J Agric Food Chem 37(3):752–756. https://doi.org/10.1021/jf00087a040

    Article  CAS  Google Scholar 

  • Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, Mueller L (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genom 18(1):448. https://doi.org/10.1186/s12864-017-3791-6

    Article  CAS  Google Scholar 

  • Fannin F, Bush L (1992) Nicotine demethylation in Nicotiana. Med Sci Res 20:867–868

    CAS  Google Scholar 

  • Fisher M, Bennett C, Hayes A, Kargalioglu Y, Knox B, Xu D, Gaworski C (2012) Sources of and technical approaches for the abatement of tobacco specific nitrosamine formation in moist smokeless tobacco products. Food Chem Toxicol 50(3–4):942–948. https://doi.org/10.1016/j.fct.2011.11.035

    Article  CAS  PubMed  Google Scholar 

  • Frederick J, Shen Y, Xu D, Warek U, Strickland J (2015) Tobacco plants having altered amounts of one or more alkaloids in leaf and methods of using such plants. US Patent No. 20150173319/ WO/2015/085299

    Google Scholar 

  • Gavilano L, Siminszky B (2007) Isolation and characterization of the cytochrome P450 gene CYP82E5v2 that mediates nicotine to nornicotine conversion in the green leaves of tobacco. Plant Cell Physiol 48(11):1567–1574. https://doi.org/10.1093/pcp/pcm128

    Article  CAS  PubMed  Google Scholar 

  • Gunduz I, Kondylis A, Jaccard G, Renaud J, Hofer R, Ruffieux L, Gadani F (2016) Tobacco-specific N-nitrosamines NNN and NNK levels in cigarette brands between 2000 and 2014. Regul Toxicol Pharmacol 76:113–120. https://doi.org/10.1016/j.yrtph.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T, Yamada Y (1993) Nicotine and tropane alkaloids. In: Lea PJ (ed) Methods in plant biochemistry, vol 9. Academic Press, London, pp 369–379

    Google Scholar 

  • Hecht S, Castonguay A, Chung F Hoffmann D (1984) Carcinogenicity and metabolic activation of tobacco-specific nitrosamines: current status and future prospects. IARC Sci Publ (57):763–778

    Google Scholar 

  • Hecht S, Chen C, Hirota N, Ornaf R, Tso T, Hoffmann D (1978a) Tobacco-specific nitrosamines: formation from nicotine in vitro and during tobacco curing and carcinogenicity in strain A mice. J Natl Cancer Inst 60(4):819–824

    Article  CAS  Google Scholar 

  • Hecht S, Chen C, Ornaf R, Jacobs E, Adams J, Hoffmann D (1978b) Reaction of nicotine and sodium nitrite: formation of nitrosamines and fragmentation of the pyrrolidine ring. J Org Chem 43(1):72–76

    Article  CAS  Google Scholar 

  • Hecht S, Chen C, Ohmori T, Hoffmann D (1980) Comparative carcinogenicity in F344 rats of the tobacco-specific nitrosamines, N’-nitrosonornicotine and 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res 40(2):298–302

    CAS  PubMed  Google Scholar 

  • Hibi N, Fujita T, Hatano M, Hashimoto T, Yamada Y (1992) Putrescine N-methyltransferase in cultured roots of hyoscyamus albus: n-butylamine as a potent inhibitor of the transferase both in vitro and in vivo. Plant Physiol 100(2):826–835

    Article  CAS  Google Scholar 

  • Hildreth S, Gehman E, Yang H, Lu R, Ritesh K, Harich K, Jelesko J (2011) Tobacco nicotine uptake permease (NUP1) affects alkaloid metabolism. Proc Natl Acad Sci USA 108(44):18179–18184. https://doi.org/10.1073/pnas.1108620108

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffmann D, Brunnemann K, Prokopczyk B, Djordjevic M (1994) Tobacco-specific N-nitrosamines and Areca-derived N-nitrosamines: chemistry, biochemistry, carcinogenicity, and relevance to humans. J Toxicol Environ Health 41(1):1–52. https://doi.org/10.1080/15287399409531825

    Article  CAS  PubMed  Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risk to Humans (2007) Smokeless tobacco and some tobacco-specific N-nitrosamines. (IARC monographs on the evaluation of carcinogenic risks to humans, No. 89.) https://www.ncbi.nlm.nih.gov/books/NBK326497/. Lyon, France: International Agency for Research on Cancer

  • Jack A, Bush L, Fannin N, Miller R (2004) Proceedings of the 41st workers conference, Nashville, TN

    Google Scholar 

  • Jackish R, Rovedder J (2007) Burley tobacco post-curing management and its effect in the nitrosamine amount. Paper presented at the CORESTA Joint Study Group Meeting, Krakow, Poland, October 2007

    Google Scholar 

  • Kajikawa M, Shoji T, Kato A, Hashimoto T (2011) Vacuole-localized berberine bridge enzyme-like proteins are required for a late step of nicotine biosynthesis in tobacco. Plant Physiol 155(4):2010–2022. https://doi.org/10.1104/pp.110.170878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajikawa M, Sierro N, Kawaguchi H, Bakaher N, Ivanov N, Hashimoto T, Shoji T (2017) Genomic insights into the evolution of the nicotine biosynthesis pathway in tobacco. Plant Physiol 174(2):999–1011. https://doi.org/10.1104/pp.17.00070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato K, Shoji T, Hashimoto T (2014) Tobacco nicotine uptake permease regulates the expression of a key transcription factor gene in the nicotine biosynthesis pathway. Plant Physiol 166(4):2195–2204. https://doi.org/10.1104/pp.114.251645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krauss M, Li Q, Walter P (2003) A method for the reduction of tobacco-specific nitrosamines by increasing antioxidants in tobacco. US Patent No. WO2003022081A1

    Google Scholar 

  • Kudithipudi C, Morris J, Lusso M (2016) Ultra-low nicotine tobacco lines with improved leaf quality. Paper presented at the 2016 CORESTA Congress, Berlin, Germany

    Google Scholar 

  • Law A, Fisher C, Jack A, Moe L (2016) Tobacco, microbes, and carcinogens: correlation between tobacco cure conditions, tobacco-specific nitrosamine content, and cured leaf microbial community. Microb Ecol 72(1):120–129. https://doi.org/10.1007/s00248-016-0754-4

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Cho Y (2001) Identification of essential active-site residues in ornithine decarboxylase of Nicotiana glutinosa decarboxylating both L-ornithine and L-lysine. Biochem J 360(Pt 3):657–665

    Article  CAS  Google Scholar 

  • Leete E (1980) Alkaloids derived from ornithine, lysine, and nicotinic acid. In: Bell EA, Charlwood BV (eds) Encyclopedia of plant psysiology, vol 8. Springer-Verlag, Berlin, Germany

    Google Scholar 

  • Leete E, Mueller ME (1982) Biomimetic synthesis of anatabine from 2,5-dihydropyridine produced by the oxidative decarboxylation of baikiain. J Am Chem Soc 104(23):6440–6444. https://doi.org/10.1021/ja00387a048

    Article  CAS  Google Scholar 

  • Leete E, Slattery S (1976) Incorporation of [2-14C]-and [6-14C]nicotinic acid into the tobacco alkaloids. Biosynthesis of anatabine and alpha,beta-dipyridyl. J Am Chem Soc 98(20):6326–6330

    Google Scholar 

  • Legg P, Chaplin J, Williamson R (1977) Genetic diversity in burley and flue-cured tobacco. Crop Sci 17:943–947

    Article  CAS  Google Scholar 

  • Legg P, Collins G (1971) Inheritance of per cent total alkaloids in Nicotiana tabacum L. II. Genetic effects of two loci in Burley 21 × LA Burley 21 populations. Can J Genet Cytol 13(2):287–291 https://doi.org/10.1139/g71-047

  • Legg P, Collins G (1988) Registration of HI and LI Burley 21 tobacco germplasm. Crop Science 28(1):206–207

    Google Scholar 

  • Lewis R, Bowen S, Keogh M, Dewey R (2010) Three nicotine demethylase genes mediate nornicotine biosynthesis in Nicotiana tabacum L.: functional characterization of the CYP82E10 gene. Phytochemistry 71(17–18):1988–1998 https://doi.org/10.1016/j.phytochem.2010.09.011

  • Lewis R, Lopez H, Bowen S, Andres K, Steede W, Dewey R (2015) Transgenic and mutation-based suppression of a berberine bridge enzyme-like (BBL) gene family reduces alkaloid content in field-grown tobacco. PloS one 10(2):e0117273. https://doi.org/10.1371/journal.pone.0117273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis R, Parker R, Danehower D, Andres K, Jack A, Whitley D, Bush L (2012) Impact of alleles at the Yellow Burley (Yb) loci and nitrogen fertilization rate on nitrogen utilization efficiency and tobacco-specific nitrosamine (TSNA) formation in air-cured tobacco. J Agric Food Chem 60(25):6454–6461. https://doi.org/10.1021/jf2053614

    Article  CAS  PubMed  Google Scholar 

  • Lion K, Lusso M, Adams A, Morris W, Hart F (2015) The relationship of tobacco specific nitrosamine (TSNA) levels with relative humidity during curing in U.S. burly. Paper presented at the 2015 CORESTA meeting

    Google Scholar 

  • Lu J, Zhang L, Lewis R, Bovet L, Goepfert S, Jack AM, Dewey R (2016) Expression of a constitutively active nitrate reductase variant in tobacco reduces tobacco-specific nitrosamine accumulation in cured leaves and cigarette smoke. Plant Biotechnol J 14(7):1500–1510. https://doi.org/10.1111/pbi.12510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lusso M, Gunduz I, Kondylis A, Jaccard G, Ruffieux L, Gadani F, Strickland J (2017) Novel approach for selective reduction of NNN in cigarette tobacco filler and mainstream smoke. Regul Toxicol Pharmacol 89:101–111. https://doi.org/10.1016/j.yrtph.2017.07.019

    Article  CAS  PubMed  Google Scholar 

  • Lusso M, Hayes A, Lion K, Hart F, Morris W (2012) Impact of curing management practices on leaf TSNA content in dark fire-cured tobacco. Paper presented at the CORESTA Congress, Sapporo, 2012, Agronomy/Phytopathology Groups, AP 10

    Google Scholar 

  • MacKown C, Eivazi F, Sims J, Bush L (1984) Tobacco-specific N-nitrosamines: effect of burley alkaloid isolines and nitrogen fertility management. J Agric Food Chem 32:1269–1272

    Article  CAS  Google Scholar 

  • Mann T, Weybrew J, Matzinger D, Hall J (1964) Inheritance of the conversion of nicotine to nornicotine in varieties of Nicotiana tabacum L. and related amphidiploids. Crop Science 4:349–353

    Article  CAS  Google Scholar 

  • Miller R, Jack A, Bush L (2004). Screening commercial burley tobacco cultivars for nornicotine conversion. Paper presented at the 41st Tobacco Workers Conference, Nashville, TN

    Google Scholar 

  • Morita M, Shitan N, Sawada K, Van Montagu M, Inze D, Rischer H, Yazaki K (2009) Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc Natl Acad Sci U S A 106(7):2447–2452. https://doi.org/10.1073/pnas.0812512106

    Article  PubMed  PubMed Central  Google Scholar 

  • National Institute of Environmental Health Sciences (2011) National Toxicology Program. NTP 12th Report on Carcinogens. Rep Carcinog, 12, iii-499

    Google Scholar 

  • Piade JJ, Hoffmann D (1980) Chemical studies on tobacco smoke LXVII. Quantitative determination of alkaloids in tobacco by liquid chromatography. J Liquid Chromatogr 3(10):1505–1515. https://doi.org/10.1080/01483918008062792

  • Saito H, Miyazaki M, Miki J (2006) Role of nitrogen oxides in tobacco-specific nitrosamine formation in burley tobacco. Paper presented at the CORESTA Congress, Paris, France, 15–20 Oct 2006

    Google Scholar 

  • Saitoh F, Noma M, Kawashima N (1985) The alkaloid contents of sixty Nicotiana species. Phytochemistry 24(3):477–480. https://doi.org/10.1016/S0031-9422(00)80751-7

    Article  CAS  Google Scholar 

  • Scanlan R (1983) Formation and occurrence of nitrosamines in food. Cancer Res 43(5 Suppl):2435s–2440s

    CAS  PubMed  Google Scholar 

  • Shi H, Wang R, Bush LP, Zhou J, Yang H, Fannin N, Bai R (2013) Changes in TSNA contents during tobacco storage and the effect of temperature and nitrate level on TSNA formation. J Agric Food Chem 61(47):11588–11594. https://doi.org/10.1021/jf404813m

    Article  CAS  PubMed  Google Scholar 

  • Shoji T, Hashimoto T (2011) Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant Cell Physiol 52(6):1117–1130. https://doi.org/10.1093/pcp/pcr063

    Article  CAS  PubMed  Google Scholar 

  • Shoji T, Hashimoto T (2012) DNA-binding and transcriptional activation properties of tobacco NIC2-locus ERF189 and related transcription factors. Plant Biotechnology 29:35–42. https://doi.org/10.5511/plantbiotechnology.11.1216a

    Article  CAS  Google Scholar 

  • Shoji T, Hashimoto T (2014) Biosynthesis and regulation of tobacco alkaloids. In: Wallner F (ed) Herbacious plants: cultivation methods, grazing and environmental impacts. Nova Biomedical, pp 37–67

    Google Scholar 

  • Shoji T, Inai K, Yazaki Y, Sato Y, Takase H, Shitan N, Hashimoto T (2009) Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant Physiol 149(2):708–718. https://doi.org/10.1104/pp.108.132811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siminszky B, Gavilano L, Bowen S, Dewey R (2005) Conversion of nicotine to nornicotine in Nicotiana tabacum is mediated by CYP82E4, a cytochrome P450 monooxygenase. Proc Natl Acad Sci USA 102(41):14919–14924. https://doi.org/10.1073/pnas.0506581102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solt M, Dawson R, Christman D (1960) Biosynthesis of anabasine and of nicotine by excised root cultures of nicotiana glauca. Plant Physiol 35(6):887–894

    Article  CAS  Google Scholar 

  • Sumner P (2007) Tobacco barn retrofit information: retrofitting tobacco curing barns. Accessed from http://cpes.peachnet.edu/tobacco/retrofitinfo.htm

  • Thomas T, Brandon J, Bailey W, Losty T (2010) Method for reducing nitrosamines. US Patent No. 7,757,697 B2

    Google Scholar 

  • US Food and Drug Administration (2018) Harmful and potentially harmful constituents (HPHCs). Accessed from https://www.fda.gov/tobaccoproducts/labeling/productsingredientscomponents/ucm20035927.htm

  • University of Kentucky, University of Tennessee, Virginia Polytechnic Institute and State University, & North Carolina State University – Cooperative Effort (2017) Burley and dark tobacco production guide. Knoxville, TN: Good Agricultural Practices Connection

    Google Scholar 

  • Valleau W (1949) Breeding low-nicotine tobacco. Agric Res 78:171–181

    CAS  Google Scholar 

  • Verrier J, Wiernik A, Staaf M, Cadilhac J, Onillon M, Vidal B (2008) The influence of post-curing of Burley tobacco and dark air cured tobacco on TSNA and nitrite levels. Paper presented at the CORESTA Congress, Shanghai, China, 2–7 Nov 2008

    Google Scholar 

  • Wagner R, Wagner K (1985) The pyridine-nucleotide cycle in tobacco Enzyme activities for the de-novo synthesis of NAD. Planta 165(4):532–537. https://doi.org/10.1007/bf00398100

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yang H, Shi H, Zhou J, Bai R, Zhang M, Jin T (2017) Nitrate and nitrite promote formation of tobacco-specific nitrosamines via nitrogen oxides intermediates during postcured storage under warm temperature. J Chem 2017:11. https://doi.org/10.1155/2017/6135215

    Article  CAS  Google Scholar 

  • Wang P, Zeng J, Liang Z, Miao Z, Sun X, Tang K (2009) Silencing of PMT expression caused a surge of anatabine accumulation in tobacco. Mol Biol Rep 36(8):2285–2289. https://doi.org/10.1007/s11033-009-9446-1

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Deng X, Cai D, Ji Z, Wang C, Yu J, Chen S (2014) Decreased tobacco-specific nitrosamines by microbial treatment with Bacillus amyloliquefaciens DA9 during the air-curing process of burley tobacco. J Agric Food Chem 62(52):12701–12706. https://doi.org/10.1021/jf504084z

    Article  CAS  PubMed  Google Scholar 

  • Wiernik A, Christakopoulos A, Johansson L, Wahlberg I (1995) Effect of air-curing on chemical composition of tobacco. Rec Adv Tob Sci 21:39–80

    Google Scholar 

  • Xie J, Song W, Maksymowicz W (2004) Biotechnology: a tool for reduced risk tobacco products—the nicotine experience from test tube to cigarette pack. Rec Adv Tob Sci 30:17–37

    CAS  Google Scholar 

  • Xu D, Shen Y, Chappell J, Cui M, Nielsen M (2007) Biochemical and molecular characterizations of nicotine demethylase in tobacco. Physiol Plant 129(2):307–319. https://doi.org/10.1111/j.1399-3054.2006.00811.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, D., Lusso, M.F., Strickland, J.A. (2020). Impact of Genetics and Production Practices on Tobacco-Specific Nitrosamine Formation. In: Ivanov, N.V., Sierro, N., Peitsch, M.C. (eds) The Tobacco Plant Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-29493-9_10

Download citation

Publish with us

Policies and ethics