Skip to main content

Optical Surface Metrology: Methods

  • Chapter
  • First Online:
  • 1113 Accesses

Part of the book series: Springer Series in Measurement Science and Technology ((SSMST))

Abstract

The techniques in surface metrology with the largest diversity are based on electrodynamics, more precise on the interaction of electromagnetic waves with the surface of the workpiece. State-of-the-art camera technology, proper attention to the internal optical design, light sources, and computing capabilities have led to impressive optical metrology systems with considerable specifications. The most relevant techniques are discussed in the following Sects. 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and 5.10.

This chapter comprises the following methods:

  • Confocal Optical Profiling,

  • Light Sectional Methods,

  • Various Microscopy Methods,

  • Various Interferometric Methods,

  • Wave Front Sensing,

  • Deflectometry,

  • Elastic Light Scattering, and

  • Spectral Analysis and Characterization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Molesini, G., Pedrini, G., Poggi, P., Quercioli, F.: Focus-wavelength encoded profilometer. Opt. Commun. 49, 229–233 (1984)

    Article  ADS  Google Scholar 

  2. Browne, M.A., Akinyemi, O., Boyde, A.: Confocal surface profiling utilizing chromatic aberration. Scanning. 14, 145–153 (1992)

    Article  Google Scholar 

  3. Tiziani, H.J., Uhde, H.M.: Three dimensional imaging sensing by chromatic confocal microscopy. Appl. Opt. 33, 1838–1843 (1994)

    Article  ADS  Google Scholar 

  4. Jordan, M., Wegner, M., Tiziani, H.J.: Highly accurate non-contact characterization of engineering surfaces using confocal microscopy. Meas. Sci. Technol. 9, 1142–1151 (1998)

    Article  ADS  Google Scholar 

  5. Papastathopoulos, E., Koerner, K., Osten, W.: Chromatic confocal spectral interferometry. Appl. Opt. 45(32), 8244–8252 (2006)

    Article  ADS  Google Scholar 

  6. Kunkel, M., Schulze, J.: Noncontact measurement of central lens thickness. Glas. Sci. Technol. 78(5), 245–247 (2005)

    Google Scholar 

  7. Compaan, K., Kramer, P.: The Philips VLP system. Philips Tech. Rev. 33(7), 178–180 (1973)

    Google Scholar 

  8. Bouwhuis, G., Braat, J.: Principles of Optical Disc Systems. Hilger, Bristol (1985)

    Google Scholar 

  9. Bricot, C., Lehureau, J.C., Fokussiereinrichtung, German patent DE 2501124 A1 (1974)

    Google Scholar 

  10. Bricot, C., Lehureau, F., Puech, C., le Carvennec, F.: Optical readout of videodisc. IEEE Trans. Consum. Electron. CE-22(4), 304–308 (1976)

    Article  Google Scholar 

  11. Scheimpflug, T.: Improved method and apparatus for the systematic alteration or distortion of plane pictures and images by means of lenses and mirrors for photography and for other purposes, British Patent No. 1196 (1904)

    Google Scholar 

  12. Kühmstedt, P., Munkelt, C., Heinze, M., Bräuer-Burchardt, C., Notni, G.: 3D shape measurement with phase correlation based fringe projection. Proc. SPIE. 6616, 66160B (2007)

    Article  ADS  Google Scholar 

  13. Wiegmann, A., Wagner, H., Kowarschik, R.: Human face measurements by projection band-limited random patterns. Opt. Express. 14, 7692–7968 (2006)

    Article  ADS  Google Scholar 

  14. Grosse, M., Schaffer, M., Harendt, B., Kowarschik, R.: Fast data acquisition from three-dimensional shape measurements using fixed-pattern projection and temporal coding. Opt. Eng. 50, 100503 (2011)

    Article  ADS  Google Scholar 

  15. Schaffer, M., Grosse, M., Kowarschik, R.: High-speed pattern projection from three-dimensional shape measurement using laser speckles. Appl. Opt. 49, 3622–3629 (2010)

    Article  ADS  Google Scholar 

  16. Schaffer, M., Grosse, M., Harendt, B., Kowarschik, R.: Coherent two-beam interference fringe projection for high speed three-dimensional shape measurements. Appl. Opt. 52, 2306–2311 (2013)

    Article  ADS  Google Scholar 

  17. Abbe, E.: Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arkiv. Mikroskop. Anat. 9(1), 413–418 (1873)

    Article  Google Scholar 

  18. Berek, M.: Grundlagen der Tiefenwahrnehmung im Mikroskop mit einem Anhang über die Bestimmung der obersten Grenze des unvermeidlichen Fehlers einer Messung aus der Häufigkeitsverteilung des zufälligen Maximalfehler. Sitzungsberichte der Gesellschaft zur Beförderung der gesamten Naturwissenschaften zu Marburg. 62(6), 189–223 (1927)

    Google Scholar 

  19. Zernike, F.: Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung. Z. techn. Physik. 16, 454–457 (1935)

    Google Scholar 

  20. Zernike, F.: How I discovered phase contrast. Science. 121(3141), 345–349 (1955)

    Article  ADS  Google Scholar 

  21. Normarski, G.: Interféromètre à polarisation, French patent No. 1.059.123 (1952)

    Google Scholar 

  22. Nomarski, G.: Microinterféromètre différentiel à ondes polarisées. J. Phys. Radium. 16, S9–S13 (1955)

    Google Scholar 

  23. Minsky, M.: Microscopy Apparatus, U.S. Patent 3, 013, 467 (1961)

    Google Scholar 

  24. Minsky, M.: Memoir on inventing the confocal scanning microscopy. Scanning. 10, 128–138 (1988)

    Article  Google Scholar 

  25. Ruprecht, A.K., Wiesendanger, T.F., Tiziani, H.J.: Signal evaluation for high-speed confocal measurements. Appl. Opt. 41(35), 7410–7415 (2002)

    Article  ADS  Google Scholar 

  26. Wilson, T. (ed.): Confocal Microscopy. Academic, New York (1990)

    Google Scholar 

  27. Pawley, J.B. (ed.): Handbook of Biological Confocal Microscopy. Plenum Press, New York (1995)

    Google Scholar 

  28. Corle, T.R., Kino, G.S.: Confocal Scanning Optical Microscopy and Related Imaging Systems. Academic, New York (1996)

    Google Scholar 

  29. Sheppard, C.J.R., Shotton, D.M.: Confocal Laser Scanning Microscopy. BIOS Scientific Publishers, Oxford (1997)

    Google Scholar 

  30. Paddock, S.W. (ed.): Confocal Microscopy: Methods and Protocols. Humana Press, Totowa (1999)

    Google Scholar 

  31. Diaspro, A. (ed.): Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances. Wiley-Liss, New York (2002)

    Google Scholar 

  32. Egger, M.D., Petran, M.: New reflected-light microscope for viewing unstained brain and ganglion cells. Science. 157, 305–307 (1967)

    Article  ADS  Google Scholar 

  33. Petráň, M., Hadravský, M., Egger, M.D., Galambos, R.: Tandem-scanning reflected-light microscope. J. Opt. Soc. Am. 58(5), 661–664 (1968)

    Article  ADS  Google Scholar 

  34. Nipkow, P.: Elektrisches Teleskop, German Patent DE30105 (C), 15 January 1885

    Google Scholar 

  35. Tiziani, H.J., Achi, R., Krämer, R.N., Wiegers, L.: Theoretical analysis of confocal microscopy with microlenses. Appl. Opt. 35(1), 120–125 (1996)

    Article  ADS  Google Scholar 

  36. Ichihara, A., Tanaami, T., Isozaki, K.: High-speed confocal fluorescent microscopy using a Nipkow scanner with microlenses for 3-D imaging of single fluorescent molecule in real time. Bioimages. 42, 57–62 (1996)

    Google Scholar 

  37. Hell, S.W.: Double-confocal scanning microscope, European Patent EP 0491289, 24 June 1992

    Google Scholar 

  38. Hell, S.W., Stelzer, E.H.K.: Properties of a 4π confocal fluorescence microscope. J. Opt. Soc. Am. A. 9(12), 2159–2166 (1992)

    Article  ADS  Google Scholar 

  39. Hell, S.W., Stelzer, E.H.K., Lindek, S., Cremer, C.: Confocal microscopy with an increased detection aperture: type-B 4π confocal microscopy. Opt. Lett. 19(3), 222–224 (1994)

    Article  ADS  Google Scholar 

  40. Cremer C., Cremer T.: 4Π Punkthologramme: Physikalische Grundlagen und mögliche Anwendungen. Enclosure to Patent application DE 2116521, 12 October 1972

    Google Scholar 

  41. Cremer, C., Cremer, T.: Considerations on a laser-scanning-microscope with high resolution and depth of field. Microsc. Acta. 81(1), 31–44 (1978)

    Google Scholar 

  42. Hell, S.W., Wichmann, J.: Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)

    Article  ADS  Google Scholar 

  43. Hell, S.W.: Far-field optical nanoscopy. Science. 316, 1153–1158 (2007)

    Article  ADS  Google Scholar 

  44. Hell, S.W., Kroug, M.: Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit. Appl. Phys. B Lasers Opt. 60, 495–497 (1995)

    Article  ADS  Google Scholar 

  45. Hell, S.W.: Toward fluorescence nanoscopy. Nat. Biotechnol. 21(11), 1347–1355 (2003)

    Article  Google Scholar 

  46. Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J., Hess, H.F.: Imaging intracellular fluorescent proteins at nanometer resolution. Science. 313, 1642–1645 (2006)

    Article  ADS  Google Scholar 

  47. Rust, M.J., Bates, M., Zhuang, X.: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods. 3, 793–796 (2006)

    Article  Google Scholar 

  48. Dertinger, T., Colyer, R., Iyer, G., Weiss, S., Enderlein, J.: Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. U. S. A. 106, 22287–22292 (2009)

    Article  ADS  Google Scholar 

  49. Pohl, D.W., Denk, W., Lanz, M.: Optical stethoscopy: image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–653 (1984)

    Article  ADS  Google Scholar 

  50. Pohl, D.W., Denk, W., Dürig, U.: Optical stethoscopy: imaging with λ/20. Proc. Soc. Photo-Opt. Instrum. Eng. 565, 56–61 (1986)

    Google Scholar 

  51. Dürig, U., Pohl, D.W., Rohner, F.: Near-field optical scanning microscopy. J. Appl. Phys. 51, 3318–3327 (1986)

    Article  ADS  Google Scholar 

  52. Pohl, D.W.: Scanning near-field optical microscopy (SNOM). Adv. Opt. Electron Microsc. 12, 243–312 (1991)

    Article  Google Scholar 

  53. Betzig, E., Trautman, J.K.: Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science. 257, 189–195 (1992)

    Article  ADS  Google Scholar 

  54. Heinzelmann, H., Pohl, D.W.: Scanning near-field optical microscopy. Appl. Phys. A Mater. Sci. Process. 59, 89–101 (1994)

    Article  ADS  Google Scholar 

  55. Synge, E.H.: A suggested method for extending the microscopic resolution into the ultramicroscopic region. Phil. Mag. 6, 356–362 (1928)

    Article  Google Scholar 

  56. Ash, E.A., Nicholls, G.: Super-resolution aperture scanning microscope. Nature. 237(5357), 510–512 (1972)

    Article  ADS  Google Scholar 

  57. Girard, C., Dereux, A.: Near-field optics theories. Rep. Prog. Phys. 59, 657–699 (1996)

    Article  ADS  Google Scholar 

  58. Carré, P.: Installation et utilisation du comparateur photoelectrique et Interferentiel du Bureau International de Poids et Measures. Metrologia. 1, 13–23 (1966)

    Article  ADS  Google Scholar 

  59. Crane, R.: Interference phase measurement. Appl. Opt. 8, 538–542 (1969)

    Google Scholar 

  60. Wyant, J.C.: Double frequency grating lateral shear interferometer. Appl. Opt. 12, 2057–2060 (1973)

    Article  ADS  Google Scholar 

  61. Bruning, J.H., Herriott, D.R., Gallagher, J.E., Rosenfeld, D.P., White, A.D., Brangaccio, D.J.: Digital wavefront measuring interferometer for testing optical surfaces and lenses. Appl. Opt. 13, 2693–2703 (1974)

    Article  ADS  Google Scholar 

  62. Wyant, J.C.: Use of an ac heterodyne lateral shear interferometer with real-time wavefront correction systems. Appl. Opt. 14, 2622–2626 (1975)

    Article  ADS  Google Scholar 

  63. Schwider, J., Burow, R., Elssner, K.-E., Grzanna, J., Spolaczyk, R., Merkel, K.: Digital wave-front measuring interferometry: some systematic error sources. Appl. Opt. 22, 3421–3432 (1983)

    Article  ADS  Google Scholar 

  64. Schwider, J.: Advanced evaluation techniques. In: Wolf, E. (ed.) Interferometry, in Progress in Optics, vol. XXVIII, pp. 271–359. Elsevier, Amsterdam (1990)

    Google Scholar 

  65. Hariharan, P., Oreb, B.F., Eiju, T.: Digitial phase-shifting interferometry: a simple error-compensating phase calculation algorithm. Appl. Opt. 26, 2504–2506 (1987)

    Article  ADS  Google Scholar 

  66. Polster, H.D., Pastor, J., Scott, R.M., Crane, R., Langenbeck, P.H., Pilston, R., Steinberg, G.: New developments in interferometry. Appl. Opt. 8, 521–556 (1969)

    Article  ADS  Google Scholar 

  67. Wyant, J.C., MacGovern, A.J.: Computer generated holograms for testing aspheric optical elements, Applications de LHolographie, Laboratoire de Physique Generale et Optique, pp. 13–18. Universite de Besancon, Besancon (1970)

    Google Scholar 

  68. MacGovern, A.J., Wyant, J.C.: Computer generated holograms for testing optical elements. Appl. Opt. 10, 619–624 (1971)

    Article  ADS  Google Scholar 

  69. Wyant, J.C., Bennett, V.P.: Using computer generated holograms to test aspheric wavefronts. Appl. Opt. 11, 2833–2839 (1972)

    Article  ADS  Google Scholar 

  70. Malacara, D., Servin, M., Malacara, Z.: Interferogram analysis for optical testing. Marcel Dekker Inc., New York (1998)

    Google Scholar 

  71. Malacara, D., Creath, K., Schmit, J., Wyant, J.C.: Testing of aspheric wavefronts and surfaces. In: Malacara, D. (ed.) Optical Shop Testing, 3rd edn, pp. 477–488. Wiley, New York (2007)

    Chapter  Google Scholar 

  72. Dörband, B., Tiziani, H.J.: Testing aspheric surfaces with computer generated holograms: analysis of adjustment and shape errors. Appl. Opt. 24, 2604–2611 (1985)

    Article  ADS  Google Scholar 

  73. J. Schwider, Interferometric tests for aspherics, in fabrication and testing of Aspheres, 24 of OSA Trends in Optics and Photonics, M. Taylor, M Piscotty, A. Lindquist (Optical Society of America, Washington, DC, 1999)., paper T3

    Google Scholar 

  74. Pruss, C., Reichelt, S., Tiziani, H.J., Olsen, W.: Computer generated holograms in interferometric testing. Opt. Eng. 43, 2534–2540 (2004)

    Article  ADS  Google Scholar 

  75. Zernike, F.: Beugungstheorie des Schneidenverfahrens und Seiner Verbesserten Form, der Phasenkontrastmethode. Physica. 1(8), 689–704 (1934)

    Article  ADS  MATH  Google Scholar 

  76. Zernike, F.: Diffraction theory of knife-edge test and its improved form, the phase contrast method. Mon. Not. R. Astron. Soc. 94, 377–384 (1934)

    Article  ADS  Google Scholar 

  77. Garbusi, E., Pruss, C., Osten, W.: Interferometer for precise and flexible asphere testing. Opt. Lett. 33(24), 2973–2975 (2008)

    Article  ADS  Google Scholar 

  78. Liesner, J., Garbusi, E., Pruss, C., Osten, W.: Verfahren und Messvorrichtung zur Vermessung einer optisch glatten Oberfläche, German Patent DE102006057606B4, 11 December 2008

    Google Scholar 

  79. Garbusi, E., Osten, W.: Perturbation methods in optics: application to the interferometric measurement of surfaces. J. Opt. Soc. Am. A. 26, 2538–2549 (2009)

    Article  ADS  Google Scholar 

  80. Baer, G., Schindler, J., Pruss, C., Siepmann, J., Osten, W.: Calibration of a non-null test interferometer for the measurement of aspheres and free-form surfaces. Opt. Express. 22(25), 31200–31211 (2014)

    Article  ADS  Google Scholar 

  81. Baer, G., Schindler, J., Siepmann, J., Pruss, C., Osten, W., Schulz, M.: Measurement of aspheres and free-form surfaces in a non-null test interferometer: reconstruction of high-frequency errors. Proc. SPIE. 8788, 878818 (2013)

    Article  Google Scholar 

  82. Baer, G., Garbusi, E., Lyda, W., Osten, W.: Automated surface positioning for a non-null test interferometer. Opt. Express. 49(9), 095602 (2010)

    ADS  Google Scholar 

  83. Baer, G., Schindler, J., Pruss, C., Osten, W.: Correction of misalignment introduced aberration in non-null test measurements of free-form surfaces. J. Europ. Opt. Soc. 8, 130874 (2013)

    Article  Google Scholar 

  84. Malacara, D. (ed.): Optical Shop Testing, 3rd edn. Wiley, New York (2007)

    Google Scholar 

  85. Larkin, K.G.: Effective nonlinear algorithm for envelope detection in white light interferometry. J. Opt. Soc. Am. A. 13, 832–843 (1996)

    Article  ADS  Google Scholar 

  86. Sandoz, P., Devillers, R., Plata, A.: Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry. J. Mod. Opt. 44, 519–534 (1997)

    Article  ADS  Google Scholar 

  87. Creath, K.: Calibration of numerical aperture effects in interferometric microscope objectives. Appl. Opt. 28, 3333–3338 (1989)

    Article  ADS  Google Scholar 

  88. Sheppard, C.J.R., Larkin, K.G.: Effect of numerical aperture on interference fringe spacing. Appl. Opt. 34, 4731–4734 (1995)

    Article  ADS  Google Scholar 

  89. Caber, P.J.: Interferometric profiler for rough surfaces. Appl. Opt. 32, 3438–3441 (1993)

    Article  ADS  Google Scholar 

  90. Itoh, M., Yamada, R., Tian, R., Tsai, M., Yatagai, T.: Broad-band light-wave correlation topography using wavelet transform. Opt. Rev. 2(2), 135–138 (1995)

    Article  Google Scholar 

  91. de Groot, P., Deck, L.: Surface profiling by analysis of White-light Interferograms in the spatial frequency domain. J. Mod. Opt. 42, 389–401 (1995)

    Article  ADS  Google Scholar 

  92. Sandoz, P.: Wavelet transform as a processing tool in White-light interferometry. Opt. Lett. 22, 1065–1067 (1997)

    Article  ADS  Google Scholar 

  93. Recknagel, R.-J., Notni, G.: Analysis of White light Interferograms. Opt. Comm. 148, 122–128 (1998)

    Article  ADS  Google Scholar 

  94. de Groot, P., de Lega, X.C., Kramer, J., Turzhitsky, M.: Determination of fringe order in white-light interference microscopy. App. Opt. 41(22), 4517–4578 (2002)

    Google Scholar 

  95. de Groot, P., de Lega, X.C.: Signal modeling for low-coherence height-scanning interference microscopy. Appl. Opt. 43(25), 4821–4830 (2004)

    Article  ADS  Google Scholar 

  96. Larkin, K.G.: Efficient nonlinear algorithm for envelope detection in white light interferometry. J. Opt. Soc. Am. A4, 832–843 (1996)

    Article  ADS  Google Scholar 

  97. Ai, C., Novak, E.: Centroid approach for estimation modulation peak in broad-bandwidth interferometry. U.S. Patent. 5(633), 715 (1997)

    Google Scholar 

  98. Davidson, M., Kaufman, K., Mazor, I., Cohen, F.: An application of interference microscopy to integrated circuit inspection and metrology. Proc. SPIE. 775, 233–240 (1987)

    Article  ADS  Google Scholar 

  99. Kino, G.S., Chim, S.: Mirau Correlation Microscope. Appl. Opt. 29, 3775–3783 (1990)

    Article  ADS  Google Scholar 

  100. Lee, B.S., Strand, T.C.: Profilometry with a coherence scanning microscope. Appl. Opt. 29, 3784–3788 (1990)

    Article  ADS  Google Scholar 

  101. Dresel, T., Häusler, G.: Three dimensional sensing of rough surfaces by coherence radar. Appl. Opt. 31, 919–925 (1992)

    Article  ADS  Google Scholar 

  102. Häusler, G., Herrmann, J.M.: Physical limits of 3D-sensing. Proc. SPIE. 1822, 150–158 (1992)

    Article  ADS  Google Scholar 

  103. Häusler, G., Neumann, J.: Coherence radar-an accurate 3D sensor for rough surfaces. Proc. SPIE. 1822, 200–205 (1992)

    Article  ADS  Google Scholar 

  104. Mirau, A. H.: Interferometer, U. S. Patent US2612074 (A), 30 September 1952

    Google Scholar 

  105. Linnik, V.P.: Ein Apparat fur mikroskopisch-interferometrische Untersuchung reflektierender Objekte (Mikrointerferometer). Akad. Nauk S.S.S.R. Doklady. 21(1), 18–23 (1933)

    Google Scholar 

  106. Machleidt, T., Jahn, R., Wenzel, K., Nestler, R., Franke, K.-H.: Materialeffekten auf der Spur, Laser þ Photonik no. 2/2014, 46–49 (2014)

    Google Scholar 

  107. Lewke, D., Schellenberger, M., Pfitzner, L., Fries, T., Tröger, B., Muehlig, A., Riedel, F., Bauer, S., Wihr, H.: Full Wafer Nanotopography Analysis on Rough Surfaces Using Stitched White Light Interferometry Images,. ASMC 2013 SEMI Advanced Semiconductor Manufacturing Conference, pp. 243–248. Saratoga Springs, NY (2013). https://doi.org/10.1109/ASMC.2013.6552812

    Book  Google Scholar 

  108. Huntley, J.M., Saldner, H.O.: Temporal phase-unwrapping algorithm for automated fringe analysis. Appl. Opt. 32, 3047–3052 (1993)

    Article  ADS  Google Scholar 

  109. Huntley, J.M., Saldner, H.O.: Error-reduction methods for shape measurement by temporal phase unwrapping. J. Opt. Soc. Am. A. 14, 3188–3196 (1997)

    Article  ADS  Google Scholar 

  110. Saldner, H.O., Huntley, J.M.: Shape measurement by temporal phase unwrapping: comparison of unwrapping algorithms. Meas. Sci. Technol. 8, 986–992 (1997)

    Article  ADS  Google Scholar 

  111. Saldner, H.O., Huntley, J.M.: Temporal phase unwrapping: application to surface profiling of discontinuous objects. Appl. Opt. 36, 2770–2775 (1997)

    Article  ADS  Google Scholar 

  112. Huntley, J.M., Coggrave, C.R.: Progress in phase unwrapping. Proc. SPIE. 3407, 86–93 (1998)

    Article  ADS  Google Scholar 

  113. Paulson, L., Sjödahl, M., Kato, J., Yamaguchi, I.: Temporal phase unwrapping applied to wavelength-scanning interferometry. Appl. Opt. 39, 3285–3288 (2000)

    Article  ADS  Google Scholar 

  114. Hildebrand, B.P., Haines, K.A.: Multiple wavelength and multiple source holography applied to contouring generation. J. Opt. Soc. Am. 57, 155–156 (1967)

    Article  ADS  Google Scholar 

  115. Heflinger, L.O., Wuerker, R.F.: Holographic contouring via multifrequency lasers. Appl. Phys. Lett. 15, 28–30 (1969)

    Article  ADS  Google Scholar 

  116. Weigl, F.: Two-wavelength holographic interferometry for transparent media using a diffraction grating. Appl. Opt. 10, 1083–1086 (1971)

    Article  ADS  Google Scholar 

  117. Wyant, J.C.: Testing Aspherics using two-wavelength holography. Appl. Opt. 10, 2113–2118 (1971)

    Article  ADS  Google Scholar 

  118. Polhemus, C.: Two-wavelength interferometry. Appl. Opt. 12, 2071–2074 (1973)

    Article  ADS  Google Scholar 

  119. Petter, J.: Multi-wavelength interferometry for high precision distance measurement, Proc. OPTO 2009 & IRS2 2009 (AMA-Science Service, Wunstorf), OP4, 129–132 (2009)

    Google Scholar 

  120. Abramson, N.: The Interferoscope: a new type of interferometer with variable fringe separation. Optik. 30, 56–71 (1969)

    Google Scholar 

  121. Carisson, T.E., Abramson, N.H., Fischer, K.H.: Automatic measurement of surface height with the interferoscope. Opt. Eng. 35, 2938–2942 (1996)

    Article  ADS  Google Scholar 

  122. Schwider, J., Burow, R., Elssner, K.-E., Grzanna, J., Spolaczyk, R.: Semiconductor wafer and technical flat planeness testing interferometer. Appl. Opt. 25, 1117–1121 (1986)

    Article  ADS  Google Scholar 

  123. Boebel, D., Packross, B., Tiziani, H.J.: Phase shifting in an oblique incidence interferometer. Opt. Eng. 30(12), 30–35 (1991)

    Article  Google Scholar 

  124. Spür, G., Nyarsik, L., Körner, K.: Imaging characteristics of prism interferometers. Proc. SPIE. 1983, 702–703 (1993)

    ADS  Google Scholar 

  125. Birch, K.G.: Application of the “Interferoscope” to spherical and aspherical surfaces. Optik. 36(4), 399–409 (1972)

    Google Scholar 

  126. Birch, K.G.: Oblique incidence interferometry applied to non-optical surfaces. J. Phys. E. 6, 1045–1048 (1973)

    Article  ADS  Google Scholar 

  127. Hariharan, P.: Improved oblique-incidence interferometer. Opt. Eng. 14, 257–258 (1974)

    ADS  Google Scholar 

  128. Järisch, W., Makosch, G.: Interferometric surface mapping with variable sensitivity. Appl. Opt. 17, 740–742 (1978)

    Article  ADS  Google Scholar 

  129. Dresel, T., Schwider, J., Wehrhahn, A., Babin, S.: Grazing incidence interferometry applied to the measurement of cylindrical surfaces. Opt. Eng. 34, 3531–3535 (1995)

    Article  ADS  Google Scholar 

  130. Kulawiec, A.W., Fleig, J.F., Bruning, J.H.: Interferometric measurements of absolute dimensions of cylindrical surfaces, 1997 Annual Meeting of the ASPE, Norfolk, VA, October 5–10, (1997)

    Google Scholar 

  131. Hizuka, M.: Oblique incidence interferometer with fringe scan drive. U.S. patent. 5(786), 896 (1998)

    Google Scholar 

  132. de Groot, P.: Diffractive grazing-incidence interferometer. Appl. Opt. 39(10), 1527–1530 (2000)

    Article  ADS  Google Scholar 

  133. Olsson, A., Tang, C.L.: Dynamic interferometry techniques for optical path length measurements. Appl. Opt. 20, 3503–3507 (1981)

    Article  ADS  Google Scholar 

  134. Kikuta, H., Iwata, K., Nagata, R.: Distance measurement by the wavelength shift of laser diode light. Appl. Opt. 25, 2976–2980 (1986)

    Article  ADS  Google Scholar 

  135. Sasaki, O., Yoshida, T., Suzuki, T.: Double sinusoidal phase modulating laser diode interferometer for distance measurement. Appl. Opt. 30, 3617–3621 (1991)

    Article  ADS  Google Scholar 

  136. Beheim, G., Fritsch, K.: Remote displacement measurements using a laser diode. Electron. Lett. 21, 93–94 (1985)

    Article  Google Scholar 

  137. den Boef, A.J.: Interferometric laser range finder using a frequency modulated diode laser. Appl. Opt. 26, 4545–4550 (1987)

    Article  ADS  Google Scholar 

  138. Suematsu, M., Takeda, M.: Wavelength-shift interferometry for distance measurements using the Fourier transform technique for fringe analysis. Appl. Opt. 30, 4046–4055 (1991)

    Article  ADS  Google Scholar 

  139. Gabor, D.: Theory of communication. J. Inst. Electr. Eng. 93, 429–441 (1946)

    Google Scholar 

  140. Gabor, D.: A new microscopic principle. Nature. 161, 777–778 (1948)

    Article  ADS  Google Scholar 

  141. Gabor, D.: Microscopy by reconstructed wavefronts. Proc. Royal Soc. A197, 454–487 (1949)

    ADS  MATH  Google Scholar 

  142. Gabor, D.: Microscopy by reconstructed wavefronts: II. Proc. Phys. Soc. B64, 449–469 (1951)

    Article  ADS  MATH  Google Scholar 

  143. Goodman, J.W., Lawrence, R.W.: Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77–79 (1967)

    Article  ADS  Google Scholar 

  144. Pluta, M.: Advanced Light Microscopy, vol. 2, pp. 282–352. Elsevier, Amsterdam (1989), Chap. 11)

    Google Scholar 

  145. Hariharan, P.: Optical Holography. Cambridge University, Cambridge (1996)

    Book  Google Scholar 

  146. Kreis, T.: Handbook of Holographic Interferometry: Optical and Digital Methods. Wiley VCH, Weinheim (2005)

    Google Scholar 

  147. Schnars, U., Jüptner, W.: Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer, Berlin (2005)

    Google Scholar 

  148. Kim, M.K.: Principles and techniques of digital holographic microscopy. SPIE Rev. 1(1), 018005 (2010). https://doi.org/10.1117/6.0000006

    Article  Google Scholar 

  149. W. Osten, P. Ferraro, Digital holography and its application in MEMS/MOEMS inspection, in Optical Inspection of Microsystems, ed. by W. Osten, 1 (CRC Press/Taylor and Francis Group, Boca Raton, 2006), 351–426

    Google Scholar 

  150. Cuche, E., Bevilacqua, F., Depeursinge, C.: Digital holography for quantitative phase-contrast imaging. Opt. Lett. 24, 291–293 (1999)

    Article  ADS  Google Scholar 

  151. Cuche, E., Marquet, P., Depeursinge, C.: Simultaneous amplitude contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt. 38, 6994–7001 (1999)

    Article  ADS  Google Scholar 

  152. Schnars, U., Jüptner, W.: Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13, R85–R101 (2002)

    Article  ADS  Google Scholar 

  153. Kim, M.K., Yu, L.F., Mann, C.J.: Digital holography and multi-wavelength interference techniques. In: Poon, T.-C. (ed.) Digital holography and three dimensional display: principles and applications, pp. 51–72. Springer, Boston (2006)

    Chapter  Google Scholar 

  154. Kreis, T., Jüptner, W.: Suppression of the dc term in digital holography. Opt. Eng. 36, 2357–2360 (1997)

    Article  ADS  Google Scholar 

  155. Cuche, E., Marquet, P., Depeursinge, C.: Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt. 39, 4070–4075 (2000)

    Article  ADS  Google Scholar 

  156. Sirat, G., Psaltis, D.: Conoscopic holography. Opt. Lett. 10(1), 4–6 (1985)

    Article  ADS  Google Scholar 

  157. Sirat, G., Psaltis, D.: Conoscopic holograms. Opt. Comm. 65(4), 243–249 (1988)

    Article  ADS  Google Scholar 

  158. Sirat, G.: Conoscopic holography I. basic principles and physical basis. J. Opt. Soc. Am. A9(1), 70–83 (1992)

    Article  ADS  Google Scholar 

  159. Sirat, G.: Conoscopic holography II. Rigorous derivation. J. Opt. Soc. Am. A9(1), 84–90 (1992)

    Article  ADS  Google Scholar 

  160. Hartmann, J.: Bemerkungen über den Bau und die Justierung von Spektrographen Z. Instrumentenkunde. 20, 17-27–47-58 (1900)

    Google Scholar 

  161. Shack, R.B., Platt, B.C.: Production and use of a lenticular Hartmann screen. J. Opt. Soc. Am. 61, 656–660 (1971)

    Google Scholar 

  162. Platt, B.C., Shack, R.B.: History and principle of Shack-Hartmann Wavefront sensing. J. Refract. Surg. 17, 573–577 (2001)

    Article  Google Scholar 

  163. Pfund, J., Lindlein, N., Schwider, J.: Dynamic range expansion of a Shack-Hartmann sensor by use of a modified unwrapping algorithm. Opt. Lett. 23, 995–997 (1998)

    Article  ADS  Google Scholar 

  164. Olivier, S., Laude, V., Huignard, J.-P.: Liquid crystal Hartmann wave-front scanner. Appl. Opt. 39, 3838–3846 (2000)

    Article  ADS  Google Scholar 

  165. Liesener, J., Seifert, L., Tiziani, H.J., Osten, W.: Active wavefront sensing and wavefront control with SLMs. Proc. SPIE. 5532, 147–158 (2004)

    Article  ADS  Google Scholar 

  166. Stuerwald, S., Schmitt, R.: DMD-based scanning of steep wavefronts for optical testing of freeform optics. Proc. SPIE. 8618, 8618–8619 (2013)

    ADS  Google Scholar 

  167. Li, W., Bothe, T., Koplow, C., Jüptner, W.: Evaluation methods for gradient measurement techniques. Proc. SPIE. 5457, 300–311 (2004)

    Article  ADS  Google Scholar 

  168. Bothe, T., Li, W., von Kopylow, C., Jüptner, W.: High-resolution 3D shape measurement on specular surfaces by fringe reflection. Proc. SPIE. 5457, 411–422 (2004)

    Article  ADS  Google Scholar 

  169. Bothe, T., Li, W., Kopylow, C., Jüptner, W.: In: Osten, W. (ed.) Fringe 2005 - 5th International Workshop on Automatic Processing of Fringe Patterns, pp. 362–371. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  170. Häusler, G.: Verfahren und Vorrichtung zur Ermittlung der Form oder der Abbildungseigenschaften von spiegelnden oder transparenten Objekten, German Patent DE 19944354 A1, 12 April 2001

    Google Scholar 

  171. Knauer, M.C., Häusler, G.: R. Lampalzer, Verfahren und Vorrichtung zur dreidimensionalen Vermessung der Form und der lokalen Oberflächennormalen von vorzugsweise spiegelnden Objekten, German patent DE 102004020419 (2004)

    Google Scholar 

  172. Knauer, M.C., Kaminski, J., Häusler, G.: Phase measuring Deflectometry: a new approach to measure specular free-form surfaces. Proc. SPIE. 5457, 366–376 (2004)

    Article  ADS  Google Scholar 

  173. Häusler, G., Knauer, M.C., Faber, C., Richter, C., Peterhänsel, S., Kranitzky, C., Veit, K.: Deflectometry: 3D-metrology from nanometer to meter. In: Osten, b.W., Kujawinska, M. (eds.) Fringe 2009: the 6th International Workshop on Advanced Optical Metrology, pp. 416–421. Springer, Berlin (2009)

    Google Scholar 

  174. Kugimiya, K.: Characterization of polished mirror surfaces by the “Makyoh” principle. Mater. Lett. 7(5–6), 229–233 (1998)

    Google Scholar 

  175. Tokura, S., Fujino, N., Ninomiya, M., Masuda, K.: Characterization of mirror-polished silicon wafers by Makyoh method. J. Crystal Growth. 103(1–4), 437–442 (1990)

    Article  ADS  Google Scholar 

  176. Riesz, F.: Geometrical optical model of the image formation in Makyoh (magic mirror) topography. J. Phys. D. 33(19), 3033–3040 (2000)

    Article  ADS  Google Scholar 

  177. Vorburger, T.V., Marx, E., Lettieri, T.R.: Regimes of surface roughness measurable with light scattering. Appl. Opt. 32(19), 3401–3408 (1993)

    Article  ADS  Google Scholar 

  178. ASTM Standard F1048–87: Standard Test Method for Measuring the Effective Surface Roughness of Optical Components by Total Integrated Scattering (1987) (Reapproved 1999)

    Google Scholar 

  179. SEMI MF 1048-1109: Test method for measuring the effective surface roughness of optical components by total integrated scattering. Semiconductor Equipment and Materials International (2009)

    Google Scholar 

  180. Bennett, H.E., Porteus, J.O.: Relation between surface roughness and specular reflection at Normal incidence. J. Opt. Soc. Am. 51, 123–129 (1961)

    Article  ADS  Google Scholar 

  181. ASTM Standard E2387–05: Standard practice for Goniometric Optical Scatter Measurements (2011)

    Google Scholar 

  182. SEMI ME 1392-1109: Guide for angle resolved optical scatter measurements on specular or diffuse surfaces. Semiconductor Equipment and Materials International (2009)

    Google Scholar 

  183. Elson, J.M., Benett, J.M.: Calculation of the power spectral density from surface profile data. Appl. Opt. 34(1), 201–208 (1995)

    Article  ADS  Google Scholar 

  184. Brodmann, R., Gast, T., Thurn, G.: An optical instrument for measuring the surface roughness in production control. Ann. CIRP. 33(/1), 403–406 (1984)

    Article  Google Scholar 

  185. Brodmann, R., Gerstorfer, O., Thurn, G.: Optical roughness measuring instrument for fine-machined surfaces. Opt. Eng. 24, 410–413 (1985)

    Article  ADS  Google Scholar 

  186. Goodman, J.W.: Statistical Properties of Laser Speckle Patterns, in Laser speckle and related topics, Topics in Physics, vol. 9, pp. 9–75. Springer, New York (1975)

    Google Scholar 

  187. Parry, G.: Speckle Patterns in Partially Coherent Light, in Laser speckle and related topics, Topics in Physics, vol. 9, pp. 77–121. Springer, New York (1975)

    Google Scholar 

  188. Fleischer, J., Ruffing, B.: Spectral correlation of partially or fully developed speckle patterns generated by rough surfaces. J. Opt. Soc. Am. A2, 1637–1643 (1985)

    ADS  Google Scholar 

  189. Goodman, J.W.: Statistical Optics. Wiley, New York (1985)

    Google Scholar 

  190. Sirohi, R.S.: Speckle Metrology. Dekker, New York (1993)

    Google Scholar 

  191. Patzelt, S.: Simulation und experimentelle Erprobung parametrisch-optischer Rauheitsmessprozesse auf der Basis von kohärentem Streulicht und Speckle-Korrelationsverfahren, Ph.D. thesis (Verlagshaus Mainz GmbH, Aachen, 2010)

    Google Scholar 

  192. Quinten, M.: Practical Determination of Optical Constants from Spectral Measurements. BoD-Book on Demands, Norderstedt (2018)

    Google Scholar 

  193. Quinten, M.: A Practical Guide to Optical Metrology for Thin Films. Wiley-VCH, Weinheim (2012)

    Book  Google Scholar 

  194. Humlicek, J., Carriga, M., Alonso, M.I., Cardona, M.: Optical spectra of SixGe(1-x) alloys. J. Appl. Phys. 65, 2827–2832 (1989)

    Article  ADS  Google Scholar 

  195. Palik, E.D. (ed.): Handbook of Optical Constants of Solids I. Academic, San Diego (1985)

    Google Scholar 

  196. Gerfin, T., Grätzel, M.: Optical properties of tin-doped indium oxide determined by spectroscopic ellipsometry. J. Appl. Phys. 79, 1722–1729 (1996)

    Article  ADS  Google Scholar 

  197. Levenberg, K.: A method for the solution of certain problems in least squares. Q. Appl. Math. 2, 164–168 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  198. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  199. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comp. J. 7, 308–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  200. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes – the Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  201. Garnett, J.C.M.: Colours in metal glasses and in metallic films. Phil. Trans. Royal Soc. London A. 203, 385–420 (1904)

    Article  ADS  MATH  Google Scholar 

  202. Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. (Leipzig). 24, 636–679 (1935)

    Article  ADS  Google Scholar 

  203. Drude, P.: Ueber Oberflaechenschichten, I. Theil, Ann. Physik u. Chemie 36, 532–560, and II. Theil, 865–897 (1889)

    Google Scholar 

  204. Rothen, A.: The Ellipsometer, an apparatus to measure thickness of surface films. Rev. Sci. Instrum. 16(2), 26–30 (1945)

    Article  ADS  Google Scholar 

  205. Azzam, R.M.A., Bashara, N.M.: Ellipsometry and Polarized Light, 2nd edn. Elsevier, Amsterdam (1987)

    Google Scholar 

  206. Tompkins, H.G.: A User’s Guide to Ellipsometry. Dover Publications Inc., New York (2006)

    Google Scholar 

  207. Tompkins, H.G., McGahan, W.A.: Spectroscopic Ellipsometry and Reflectometry. Wiley, New York (1999)

    Google Scholar 

  208. Tompkins, H.G., Irene, E.A., Haber, E.A.: Handbook of Ellipsometry (Materials Science and Process Technology). William Andrew Inc., New York (2005)

    Google Scholar 

  209. Tompkins, H.G., Irene, E.A. (eds.): Handbook of Ellipsometry. Springer, Berlin (2006)

    Google Scholar 

  210. Fujiwara, H.: Spectroscopic Ellipsometry: Principles and Applications, 1st edn. Wiley, New York (2007)

    Book  Google Scholar 

  211. Röseler, A.: Infrared Spectroscopic Ellipsometry. Akademie-Verlag, Berlin (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quinten, M. (2019). Optical Surface Metrology: Methods. In: A Practical Guide to Surface Metrology. Springer Series in Measurement Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-29454-0_5

Download citation

Publish with us

Policies and ethics