Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 118 Accesses

Abstract

Standard chemicals used for buffer preparation and crystallization were purchased from the following vendors, unless stated otherwise: Anatrace (USA), AppliChem (Germany), Avanti Polar Lipids (USA), Fluka (Germany), Glycon (Germany), Merck (Germany), Sigma-Aldrich (Germany), Serva (Germany), Roth (Germany), VWR (Germany).

Parts of this chapter have been reproduced from Bastian Bräuning, Eva Bertosin, Florian Praetorius, Christian Ihling, Alexandra Schatt, Agnes Adler, Klaus Richter, Andrea Sinz, Hendrik Dietz, Michael Groll: Structure & mechanism of the two-component α-helical pore-forming toxin YaxAB, Nature Communications 9 (1), 1806 (2018); https://doi.org/10.1038/s41467-018-04139-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  Google Scholar 

  2. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucl Acids Res 42:W320–W324

    Article  CAS  Google Scholar 

  3. Smart OS, Goodfellow JM, Wallace BA (1993) The pore dimensions of gramicidin A. Biophys J 65:2455–2460

    Article  CAS  Google Scholar 

  4. Adams PD et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  Google Scholar 

  5. Pettersen EF et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  6. Kabsch W (2010) Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr 66:133–144

    Article  CAS  Google Scholar 

  7. Unger T, Jacobovitch Y, Dantes A, Bernheim R, Peleg Y (2010) Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression. J Struct Biol 172:34–44

    Article  CAS  Google Scholar 

  8. Van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, Clardy J (1993) Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol 229:105–124

    Article  Google Scholar 

  9. Walter TS et al (2006) Lysine methylation as a routine rescue strategy for protein crystallization. Struct Lond Engl 1993(14):1617–1622

    Google Scholar 

  10. Holyoak T et al (2003) Malonate: a versatile cryoprotectant and stabilizing solution for salt-grown macromolecular crystals. Acta Crystallogr D Biol Crystallogr 59:2356–2358

    Article  Google Scholar 

  11. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  CAS  Google Scholar 

  12. Pape T, Schneider TR (2004) HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J Appl Crystallogr 37:843–844

    Article  CAS  Google Scholar 

  13. McCoy AJ et al (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  Google Scholar 

  14. Terwilliger T (2004) SOLVE and RESOLVE: automated structure solution, density modification and model building. J Synchrotron Radiat 11:49–52

    Article  CAS  Google Scholar 

  15. McCoy AJ, Read RJ (2010) Experimental phasing: best practice and pitfalls. Acta Crystallogr D Biol Crystallogr 66:458–469

    Article  CAS  Google Scholar 

  16. Chen VB et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21

    Article  CAS  Google Scholar 

  17. Terwilliger TC et al (2009) Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr D Biol Crystallogr 65:582–601

    Article  CAS  Google Scholar 

  18. Murshudov GN et al (2011) REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367

    Article  CAS  Google Scholar 

  19. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  20. Schröder GF, Levitt M, Brunger AT (2010) Super-resolution biomolecular crystallography with low-resolution data. Nature 464:1218–1222

    Article  Google Scholar 

  21. Scheres SHW, NĂºĂ±ez-RamĂ­rez R, Sorzano COS, Carazo JM, Marabini R (2008) Image processing for electron microscopy single-particle analysis using XMIPP. Nat Protoc 3:977–990

    Article  CAS  Google Scholar 

  22. Scheres SHW (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530

    Article  CAS  Google Scholar 

  23. van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116:17–24

    Article  Google Scholar 

  24. Kimanius D, Forsberg BO, Scheres SH, Lindahl E (2016) Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife 5

    Google Scholar 

  25. Tang G et al (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46

    Article  CAS  Google Scholar 

  26. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  Google Scholar 

  27. MĂ¼ller MQ, Dreiocker F, Ihling CH, Schäfer M, Sinz A (2010) Cleavable cross-linker for protein structure analysis: reliable identification of cross-linking products by tandem MS. Anal Chem 82:6958–6968

    Article  Google Scholar 

  28. Götze M et al (2015) Automated assignment of MS/MS cleavable cross-links in protein 3D-structure analysis. J Am Soc Mass Spectrom 26:83–97

    Article  Google Scholar 

  29. Kirshenbaum N, Michaelevski I, Sharon M (2010) Analyzing large protein complexes by structural mass spectrometry. J Vis Exp JoVE. https://doi.org/10.3791/1954

    Article  PubMed  Google Scholar 

  30. Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78:1606–1619

    Article  CAS  Google Scholar 

  31. Sievers F et al (2014) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian Bräuning .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bräuning, B. (2019). Materials and Methods. In: Structural and Biochemical Characterization of the YaxAB Pore-forming Toxin from Yersinia Enterocolitica. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-29439-7_3

Download citation

Publish with us

Policies and ethics