Skip to main content

Superposition with Lambdas

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11716))

Abstract

We designed a superposition calculus for a clausal fragment of extensional polymorphic higher-order logic that includes anonymous functions but excludes Booleans. The inference rules work on \(\beta \eta \)-equivalence classes of \(\lambda \)-terms and rely on higher-order unification to achieve refutational completeness. We implemented the calculus in the Zipperposition prover and evaluated it on TPTP and Isabelle benchmarks. The results suggest that superposition is a suitable basis for higher-order reasoning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/c-cube/zipperposition.

  2. 2.

    http://matryoshka.gforge.inria.fr/pubs/lamsup_results.tgz.

References

  1. Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36(3), 414–432 (1971)

    Article  MathSciNet  Google Scholar 

  2. Andrews, P.B.: On connections and higher-order logic. J. Autom. Reason. 5(3), 257–291 (1989)

    Article  MathSciNet  Google Scholar 

  3. Andrews, P.B.: Classical type theory. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, pp. 965–1007. Elsevier and MIT Press (2001)

    Google Scholar 

  4. Andrews, P.B., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., Xi, H.: TPS: a theorem-proving system for classical type theory. J. Autom. Reason. 16(3), 321–353 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Log. Comput. 4(3), 217–247 (1994)

    Article  MathSciNet  Google Scholar 

  6. Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice. J. Autom. Reason. 47(4), 451–479 (2011)

    Article  MathSciNet  Google Scholar 

  7. Barbosa, H., Reynolds, A., Fontaine, P., El Ouraoui, D., Tinelli, C.: Higher-order SMT solving (work in progress). In: Dimitrova, R., D’Silva, V. (eds.) SMT 2018 (2018)

    Google Scholar 

  8. Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: A transfinite Knuth–Bendix order for lambda-free higher-order terms. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 432–453. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5_27

    Chapter  Google Scholar 

  9. Bentkamp, A.: Formalization of the embedding path order for lambda-free higher-order terms. Archive of Formal Proofs (2018). http://isa-afp.org/entries/Lambda_Free_EPO.html

  10. Bentkamp, A., Blanchette, J.C., Cruanes, S., Waldmann, U.: Superposition for lambda-free higher-order logic. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 28–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_3

    Chapter  Google Scholar 

  11. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P., Waldmann, U.: Superposition with lambdas (technical report). Technical report (2019). http://matryoshka.gforge.inria.fr/pubs/lamsup_report.pdf

  12. Benzmüller, C.: Extensional higher-order paramodulation and RUE-resolution. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 399–413. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48660-7_39

    Chapter  Google Scholar 

  13. Benzmüller, C., Kohlhase, M.: Extensional higher-order resolution. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 56–71. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054248

    Chapter  Google Scholar 

  14. Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J.H. (ed.) Computational Logic, Handbook of the History of Logic, vol. 9, pp. 215–254. Elsevier (2014)

    Google Scholar 

  15. Benzmüller, C., Paulson, L.C.: Multimodal and intuitionistic logics in simple type theory. Log. J. IGPL 18(6), 881–892 (2010)

    Article  MathSciNet  Google Scholar 

  16. Benzmüller, C., Sultana, N., Paulson, L.C., Theiss, F.: The higher-order prover Leo-II. J. Autom. Reason. 55(4), 389–404 (2015)

    Article  MathSciNet  Google Scholar 

  17. Bhayat, A., Reger, G.: Set of support for higher-order reasoning. In: Konev, B., Urban, J., Rümmer, P. (eds.) PAAR-2018. CEUR Workshop Proceedings, vol. 2162, pp. 2–16. CEUR-WS.org (2018)

    Google Scholar 

  18. Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic types. Log. Meth. Comput. Sci. 12(4) (2016)

    Google Scholar 

  19. Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 414–420. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_29

    Chapter  Google Scholar 

  20. Blanchette, J.C., Waldmann, U., Wand, D.: A lambda-free higher-order recursive path order. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 461–479. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7_27

    Chapter  Google Scholar 

  21. Blanqui, F., Jouannaud, J.P., Rubio, A.: The computability path ordering. Log. Meth. Comput. Sci. 11(4) (2015)

    Google Scholar 

  22. Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 107–121. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1_9

    Chapter  Google Scholar 

  23. Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_11

    Chapter  Google Scholar 

  24. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem. Indag. Math. 75(5), 381–392 (1972)

    Article  MathSciNet  Google Scholar 

  25. Cervesato, I., Pfenning, F.: A linear spine calculus. J. Log. Comput. 13(5), 639–688 (2003)

    Article  MathSciNet  Google Scholar 

  26. Cruanes, S.: Extending superposition with integer arithmetic, structural induction, and beyond. Ph.D. thesis, École polytechnique (2015)

    Google Scholar 

  27. Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 172–188. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4_10

    Chapter  Google Scholar 

  28. Czajka, Ł., Kaliszyk, C.: Hammer for Coq: automation for dependent type theory (2018)

    Google Scholar 

  29. Dougherty, D.J.: Higher-order unification via combinators. Theor. Comput. Sci. 114(2), 273–298 (1993)

    Article  MathSciNet  Google Scholar 

  30. Dowek, G.: Higher-order unification and matching. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, pp. 1009–1062. Elsevier and MIT Press (2001)

    Google Scholar 

  31. Fitting, M.: Types, Tableaus, and Gödel’s God. Kluwer (2002)

    Google Scholar 

  32. Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed clause normal form transformation. Inf. Comput. 199(1–2), 3–23 (2005)

    Article  MathSciNet  Google Scholar 

  33. Gupta, A., Kovács, L., Kragl, B., Voronkov, A.: Extensional crisis and proving identity. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 185–200. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_14

    Chapter  MATH  Google Scholar 

  34. Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15(2), 81–91 (1950)

    Article  MathSciNet  Google Scholar 

  35. Huet, G.P.: A mechanization of type theory. In: Nilsson, N.J. (ed.) IJCAI 1973, pp. 139–146. William Kaufmann (1973)

    Google Scholar 

  36. Huet, G.P.: A unification algorithm for typed lambda-calculus. Theor. Comput. Sci. 1(1), 27–57 (1975)

    Article  Google Scholar 

  37. Jensen, D.C., Pietrzykowski, T.: Mechanizing \(\omega \)-order type theory through unification. Theor. Comput. Sci. 3(2), 123–171 (1976)

    Article  MathSciNet  Google Scholar 

  38. Jouannaud, J.P., Rubio, A.: Rewrite orderings for higher-order terms in eta-long beta-normal form and recursive path ordering. Theor. Comput. Sci. 208(1–2), 33–58 (1998)

    Article  Google Scholar 

  39. Jouannaud, J.P., Rubio, A.: Polymorphic higher-order recursive path orderings. J. ACM 54(1), 2:1–2:48 (2007)

    Article  MathSciNet  Google Scholar 

  40. Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: the TPTP typed higher-order form with rank-1 polymorphism. In: Fontaine, P., Schulz, S., Urban, J. (eds.) PAAR 2016. CEUR Workshop Proceedings, vol. 1635, pp. 41–55. CEUR-WS.org (2016)

    Google Scholar 

  41. Kaliszyk, C., Urban, J.: HOL(y)Hammer: online ATP service for HOL Light. Math. Comput. Sci. 9(1), 5–22 (2015)

    Article  Google Scholar 

  42. Kohlhase, M.: Higher-order tableaux. In: Baumgartner, P., Hähnle, R., Possega, J. (eds.) TABLEAUX 1995. LNCS, vol. 918, pp. 294–309. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59338-1_43

    Chapter  Google Scholar 

  43. Konrad, K.: Hot: a concurrent automated theorem prover based on higher-order tableaux. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 245–261. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055140

    Chapter  Google Scholar 

  44. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

    Chapter  Google Scholar 

  45. Libal, T.: Regular patterns in second-order unification. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 557–571. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_38

    Chapter  Google Scholar 

  46. Lindblad, F.: A focused sequent calculus for higher-order logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 61–75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_5

    Chapter  Google Scholar 

  47. Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theor. Comput. Sci. 192(1), 3–29 (1998)

    Article  MathSciNet  Google Scholar 

  48. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reason. 40(1), 35–60 (2008)

    Article  MathSciNet  Google Scholar 

  49. Miller, D.: A logic programming language with lambda-abstraction, function variables, and simple unification. J. Log. Comput. 1(4), 497–536 (1991)

    Article  MathSciNet  Google Scholar 

  50. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371–443. Elsevier and MIT Press (2001)

    Google Scholar 

  51. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Sutcliffe, G., Schulz, S., Ternovska, E. (eds.) IWIL-2010. EPiC, vol. 2, pp. 1–11. EasyChair (2012)

    Google Scholar 

  52. Robinson, J.: Mechanizing higher order logic. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4, pp. 151–170. Edinburgh University Press (1969)

    Google Scholar 

  53. Robinson, J.: A note on mechanizing higher order logic. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 5, pp. 121–135. Edinburgh University Press (1970)

    Google Scholar 

  54. Schlichtkrull, A., Blanchette, J.C., Traytel, D., Waldmann, U.: Formalizing Bachmair and Ganzinger’s ordered resolution prover. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 89–107. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_7

    Chapter  Google Scholar 

  55. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_49

    Chapter  Google Scholar 

  56. Snyder, W.: Higher order E-unification. In: Stickel, M.E. (ed.) CADE 1990. LNCS (LNAI), vol. 449, pp. 573–587. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52885-7_115

    Chapter  Google Scholar 

  57. Snyder, W., Gallier, J.H.: Higher-order unification revisited: complete sets of transformations. J. Symb. Comput. 8(1/2), 101–140 (1989)

    Article  MathSciNet  Google Scholar 

  58. Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 108–116. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_8

    Chapter  Google Scholar 

  59. Sutcliffe, G.: The TPTP problem library and associated infrastructure-from CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

    Article  MathSciNet  Google Scholar 

  60. Sutcliffe, G., Benzmüller, C., Brown, C.E., Theiss, F.: Progress in the development of automated theorem proving for higher-order logic. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 116–130. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_8

    Chapter  MATH  Google Scholar 

  61. Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar formalizations. J. Autom. Reason. 50(2), 229–241 (2013)

    Article  MathSciNet  Google Scholar 

  62. Vukmirović, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending a brainiac prover to lambda-free higher-order logic. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 192–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_11

    Chapter  Google Scholar 

  63. Waldmann, U.: Automated reasoning II. Lecture notes, Max-Planck-Institut für Informatik (2016). http://resources.mpi-inf.mpg.de/departments/rg1/teaching/autrea2-ss16/script-current.pdf

  64. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 140–145. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_10

    Chapter  Google Scholar 

Download references

Acknowledgment

Simon Cruanes patiently explained Zipperposition’s internals and allowed us to continue the development of his prover. Christoph Benzmüller and Alexander Steen shared insights and examples with us, guiding us through the literature and clarifying how the Leos work. Maria Paola Bonacina and Nicolas Peltier gave us some ideas on how to treat the extensionality axiom as a theory axiom, ideas we have yet to explore. Mathias Fleury helped us set up regression tests for Zipperposition. Ahmed Bhayat, Tomer Libal, and Enrico Tassi shared their insights on higher-order unification. Andrei Popescu and Dmitriy Traytel explained the terminology surrounding the \(\lambda \)-calculus. Haniel Barbosa, Daniel El Ouraoui, Pascal Fontaine, and Hans-Jörg Schurr were involved in many stimulating discussions. Christoph Weidenbach made this collaboration possible. Ahmed Bhayat, Mark Summerfield, and the anonymous reviewers suggested several textual improvements. We thank them all.

Bentkamp, Blanchette, and Vukmirović’s research has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 713999, Matryoshka). Bentkamp and Blanchette also benefited from the Netherlands Organization for Scientific Research (NWO) Incidental Financial Support scheme. Blanchette has received funding from the NWO under the Vidi program (project No. 016.Vidi.189.037, Lean Forward).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bentkamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P., Waldmann, U. (2019). Superposition with Lambdas. In: Fontaine, P. (eds) Automated Deduction – CADE 27. CADE 2019. Lecture Notes in Computer Science(), vol 11716. Springer, Cham. https://doi.org/10.1007/978-3-030-29436-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29436-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29435-9

  • Online ISBN: 978-3-030-29436-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics