Skip to main content

The Potential of Factors Released from Mesenchymal Stromal Cells as Therapeutic Agents in the Lung

  • Chapter
  • First Online:
Stem Cell-Based Therapy for Lung Disease

Abstract

Mesenchymal stromal cells (MSCs) are increasingly being investigated for use in cell-based therapies of a range of inflammatory and immune-mediated conditions, including lung diseases such as the acute respiratory distress syndrome (ARDS), asthma, chronic obstructive pulmonary disease (COPD), silicosis, idiopathic pulmonary fibrosis (IPF), and pulmonary arterial hypertension (PAH). A large body of evidence suggests that, despite direct cell-to-cell contact, MSCs can act through paracrine mechanisms, including release of soluble immunomodulatory mediators, extracellular vesicles (EVs), and even through mitochondrial transfer. This chapter will provide a detailed discussion of the role of conditioned media, EVs, and organelles produced by mesenchymal stromal cells in experimental models of lung disorders and critical illness, as well as in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7. https://doi.org/10.1080/14653240600855905.

    Article  CAS  PubMed  Google Scholar 

  2. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50.

    Article  CAS  PubMed  Google Scholar 

  3. Le Blanc K, Davies LC. Mesenchymal stromal cells and the innate immune response. Immunol Lett. 2015;168:140–6. https://doi.org/10.1016/j.imlet.2015.05.004.

    Article  CAS  PubMed  Google Scholar 

  4. Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013;13:392–402. https://doi.org/10.1016/j.stem.2013.09.006.

    Article  CAS  PubMed  Google Scholar 

  5. Caplan AI. Mesenchymal stem cells: time to change the name! Stem Cells Transl Med. 2017;6:1445–51. https://doi.org/10.1002/sctm.17-0051.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cruz FF, Rocco PRM, Weiss DJ. Challenges of cell therapy for lung diseases and critical illnesses. In: Firth A, Yuan JJ, editors. Lung stem cells in the epithelium and vasculature, Stem cell biology and regenerative medicine. Cham: Springer; 2015.

    Google Scholar 

  7. Barbash IM, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation. 2003;108:863–8. https://doi.org/10.1161/01.CIR.0000084828.50310.6A.

    Article  PubMed  Google Scholar 

  8. Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP. Stem cell transplantation: the lung barrier. Transplant Proc. 2007;39(2):573–6. https://doi.org/10.1016/j.transproceed.2006.12.019.

    Article  CAS  PubMed  Google Scholar 

  9. Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther. 2016;7:7. https://doi.org/10.1186/s13287-015-0271-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rustad KC, Gurtner GC. Mesenchymal stem cells home to sites of injury and inflammation. Adv Wound Care. 2012;1:147–52. https://doi.org/10.1089/wound.2011.0314.

    Article  Google Scholar 

  11. Akram KM, Samad S, Spiteri M, Forsyth NR. Mesenchymal stem cell therapy and lung diseases. Adv Biochem Eng Biotechnol. 2013;130:105–29. https://doi.org/10.1007/10_2012_140.

    Article  PubMed  Google Scholar 

  12. Weiss DJ. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells. 2014;32(1):16–25. https://doi.org/10.1002/stem.1506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xin H, Kanehira M, Mizuguchi H, Hayakawa T, Kikuchi T, Nukiwa T, Saijo Y. Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells. 2007;25:1618–26.

    Article  CAS  PubMed  Google Scholar 

  14. Leibel S, Post M. Endogenous and exogenous stem/progenitor cells in the lung and their role in the pathogenesis and treatment of pediatric lung disease. Front Pediatr. 2016;4:36. https://doi.org/10.3389/fped.2016.00036.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Horie S, Laffey JG. Recent insights: mesenchymal stromal/stem cell therapy for acute respiratory distress syndrome. F1000Research. 2016;5. https://doi.org/10.12688/f1000research.8217.1.

    Article  Google Scholar 

  16. Goodwin M, Sueblinvong V, Eisenhauer P, Ziats NP, Leclair L, Poynter ME, Steele C, Rincon M, Weiss DJ. Bone marrow derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice. Stem Cells. 2011;29:1137–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lathrop MJ, Brooks EM, Bonenfant NR, Sokocevic D, Borg ZD, Goodwin M, Loi R, Cruz FF, Dunaway CW, Steele C, Weiss DJ. Mesenchymal stromal cells mediate aspergillus hyphal extract-induced allergic airways inflammation by inhibition of the Th17 signaling pathway. Stem Cells Transl Med. 2014;3(2):194–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cruz FF, Rocco PRM, Weiss DJ. hMSCs as an alternative therapeutic option for asthma with neutrophil mediated inflammation. Exp Mol Med. 2018;50:72. https://doi.org/10.1038/s12276-018-0072-7.

    Article  CAS  PubMed Central  Google Scholar 

  19. Cruz FF, et al. Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med. 2015;4:1302–16. https://doi.org/10.5966/sctm.2014-0280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alcayaga-Miranda F, Cuenca J, Khoury M. Antimicrobial activity of mesenchymal stem cells: current status and new perspectives of antimicrobial peptide-based therapies. Front Immunol. 2017;8:339. https://doi.org/10.3389/fimmu.2017.00339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mei SH, et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med. 2010;182:1047–57. https://doi.org/10.1164/rccm.201001-0010OC.

    Article  CAS  PubMed  Google Scholar 

  22. Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A. 2006;103:1283–8. https://doi.org/10.1073/pnas.0510511103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Islam MN, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;8(5):759–65. https://doi.org/10.1038/nm.2736.

    Article  CAS  Google Scholar 

  24. Li X, et al. Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am J Respir Cell Mol Biol. 2014;51:455–65. https://doi.org/10.1165/rcmb.2013-0529OC.

    Article  CAS  PubMed  Google Scholar 

  25. Ahmad T, et al. Miro 1 knockdown in stem cells inhibits mitochondrial donation mediated rescue of bronchial epithelial injury. Biophys J. 2014;104(2):659a. https://doi.org/10.1016/j.bpj.2012.11.3638.

    Article  Google Scholar 

  26. Phinney DG, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472. https://doi.org/10.1038/ncomms9472.

    Article  CAS  PubMed  Google Scholar 

  27. Jackson MV, et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells. 2016;34:2210–23. https://doi.org/10.1002/stem.2372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, O'Kane CM, Krasnodembskaya AD. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 2017;196:1275–86. https://doi.org/10.1164/rccm.201701-0170OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee JW, Gupta N, Serikov V, Matthay MA. Potential application of mesenchymal stem cells in acute lung injury. Expert Opin Biol Ther. 2009;9:1259–70. https://doi.org/10.1517/14712590903213651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hostettler KE, et al. Multipotent mesenchymal stem cells in lung fibrosis. PLoS One. 2017;12:e0181946. https://doi.org/10.1371/journal.pone.0181946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mohammadipoor A, Antebi B, Batchinsky AI, Cancio LC. Therapeutic potential of products derived from mesenchymal stem/stromal cells in pulmonary disease. Respir Res. 2018;19:218. https://doi.org/10.1186/s12931-018-0921-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cruz FF, Rocco PRM. Stem-cell extracellular vesicles and lung repair. Stem Cell Investig. 2017;4:78. https://doi.org/10.21037/sci.2017.09.02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. Biomed Res Int. 2014;2014:965849. https://doi.org/10.1155/2014/965849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ. Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells. 2007;25:2363–70. https://doi.org/10.1634/stemcells.2006-0686.

    Article  CAS  PubMed  Google Scholar 

  35. Goolaerts A, et al. Conditioned media from mesenchymal stromal cells restore sodium transport and preserve epithelial permeability in an in vitro model of acute alveolar injury. Am J Physiol Lung Cell Mol Physiol. 2014;306:L975–85. https://doi.org/10.1152/ajplung.00242.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ionescu L, et al. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. Am J Physiol Lung Cell Mol Physiol. 2012;303:L967–77. https://doi.org/10.1152/ajplung.00144.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shen Q, et al. Paracrine factors from mesenchymal stem cells attenuate epithelial injury and lung fibrosis. Mol Med Rep. 2015;11:2831–7. https://doi.org/10.3892/mmr.2014.3092.

    Article  CAS  PubMed  Google Scholar 

  38. LHA S, Antunes MA, Dos Santos CC, Weiss DJ, Cruz FF, Rocco PRM. Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. Stem Cell Res Ther. 2018;9:45. https://doi.org/10.1186/s13287-018-0802-8.

    Article  CAS  Google Scholar 

  39. Abreu SC, et al. Eicosapentaenoic acid enhances the effects of mesenchymal stromal cell therapy in experimental allergic asthma. Front Immunol. 2018;9:1147. https://doi.org/10.3389/fimmu.2018.01147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abreu SC, et al. Serum from asthmatic mice potentiates the therapeutic effects of mesenchymal stromal cells in experimental allergic asthma. Stem Cells Transl Med. 2019;8:301–12. https://doi.org/10.1002/sctm.18-0056.

    Article  CAS  PubMed  Google Scholar 

  41. Zheng G, et al. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir Res. 2014;15:39. https://doi.org/10.1186/1465-9921-15-39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood. 2011;118:330–8. https://doi.org/10.1182/blood-2010-12-327353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nemeth K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15:42–9. https://doi.org/10.1038/nm.1905.

    Article  CAS  PubMed  Google Scholar 

  44. Lotvall J, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913. https://doi.org/10.3402/jev.v3.26913.

    Article  PubMed  Google Scholar 

  45. Thery C, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750. https://doi.org/10.1080/20013078.2018.1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Witwer KW et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2. https://doi.org/10.3402/jev.v2i0.20360.

    Article  Google Scholar 

  47. Cruz FF, De Castro LL, Rocco PRM. Preparation of extracellular vesicles from mesenchymal stromal cells. In: Phan PV, editor. Stem cell drugs - a new generation of biopharmaceuticals. Cham: Springer; 2018.

    Google Scholar 

  48. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14:195–208. https://doi.org/10.1038/nri3622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cantaluppi V, et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int. 2012;82:412–27. https://doi.org/10.1038/ki.2012.105.

    Article  CAS  PubMed  Google Scholar 

  50. Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid AA, Mardani K. Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett. 2012;147:47–54. https://doi.org/10.1016/j.imlet.2012.06.001.

    Article  CAS  PubMed  Google Scholar 

  51. Arslan F, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10:301–12. https://doi.org/10.1016/j.scr.2013.01.002.

    Article  CAS  PubMed  Google Scholar 

  52. Lo Sicco C, et al. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med. 2017;6:1018–28. https://doi.org/10.1002/sctm.16-0363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Varkouhi AK, et al. Extracellular vesicles from interferon-gamma-primed human umbilical cord mesenchymal stromal cells reduce escherichia coli-induced acute lung injury in rats. Anesthesiology. 2019;130(5):778–90. https://doi.org/10.1097/ALN.0000000000002655.

    Article  CAS  PubMed  Google Scholar 

  54. Song Y, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1beta-primed mesenchymal stem cells against sepsis. Stem Cells. 2017;35:1208–21. https://doi.org/10.1002/stem.2564.

    Article  CAS  PubMed  Google Scholar 

  55. Matthay MA. Extracellular vesicle transfer from mesenchymal stromal cells modulates macrophage function in acute lung injury. Basic science and clinical implications. Am J Respir Crit Care Med. 2017;196:1234–6. https://doi.org/10.1164/rccm.201706-1122ED.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Del Fattore A, et al. Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes. Cell Transplant. 2015;24:2615–27. https://doi.org/10.3727/096368915X687543.

    Article  PubMed  Google Scholar 

  57. Lee C, et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 2012;126:2601–11. https://doi.org/10.1161/CIRCULATIONAHA.112.114173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bruno S, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009;20:1053–67. https://doi.org/10.1681/ASN.2008070798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Van Badiavas E. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev. 2015;24:1635–47. https://doi.org/10.1089/scd.2014.0316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang B, et al. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells. 2015;33:2158–68. https://doi.org/10.1002/stem.1771.

    Article  CAS  PubMed  Google Scholar 

  61. Alcayaga-Miranda F, Gonzalez PL, Lopez-Verrilli A, Varas-Godoy M, Aguila-Diaz C, Contreras L, Khoury M. Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species. Oncotarget. 2016;7:44462–77. https://doi.org/10.18632/oncotarget.9852.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Paliwal S, Chaudhuri R, Agrawal A, Mohanty S. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci. 2018;25:31. https://doi.org/10.1186/s12929-018-0429-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mahrouf-Yorgov M, et al. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ. 2017;24:1224–38. https://doi.org/10.1038/cdd.2017.51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cruz FF, Weiss DJ, Rocco PR. Prospects and progress in cell therapy for acute respiratory distress syndrome. Expert Opin Biol Ther. 2016;16:1353–60. https://doi.org/10.1080/14712598.2016.1218845.

    Article  CAS  PubMed  Google Scholar 

  65. Zhu YG, et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells. 2014;32:116–25. https://doi.org/10.1002/stem.1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ionescu LI, et al. Airway delivery of soluble factors from plastic-adherent bone marrow cells prevents murine asthma. Am J Respir Cell Mol Biol. 2012;46:207–16. https://doi.org/10.1165/rcmb.2010-0391OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Castro LL, et al. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Res Ther. 2017;8:151. https://doi.org/10.1186/s13287-017-0600-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim SY, et al. Mesenchymal stem cell-conditioned media recovers lung fibroblasts from cigarette smoke-induced damage. Am J Phys Lung Cell Mol Phys. 2012;302(9):L891–9. https://doi.org/10.1152/ajplung.00288.2011.

    Article  CAS  Google Scholar 

  69. Kim YS, et al. Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway. Exp Mol Med. 2017;49(1):e284. https://doi.org/10.1038/emm.2016.127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006. Chapter 3:Unit 3.22. https://doi.org/10.1002/0471143030.cb0322s30.

    Article  Google Scholar 

  71. Tan JL, et al. Amnion epithelial cell-derived exosomes restrict lung injury and enhance endogenous lung repair. Stem Cells Transl Med. 2018;7(2):180–96. https://doi.org/10.1002/sctm.17-0185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Choi M, Ban T, Rhim T. Therapeutic use of stem cell transplantation for cell replacement or cytoprotective effect of microvesicle released from mesenchymal stem cell. Mol Cells. 2014;37(2):133–9. https://doi.org/10.14348/molcells.2014.2317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shentu TP, et al. Extracellular vesicles isolated from human mesenchymal stem cells promote resolution of pulmonary fibrosis. FASEB J. 2016;30:160.2.

    Google Scholar 

  74. Krasnodembskaya A, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells (Dayton, Ohio). 2010;28(12):2229–38. https://doi.org/10.1002/stem.544.

    Article  CAS  Google Scholar 

  75. Johnson V, et al. Activated mesenchymal stem cells interact with antibiotics and host innate immune responses to control chronic bacterial infections. Sci Rep. 2017;7:9575. https://doi.org/10.1038/s41598-017-08311-4.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Monsel A, et al. Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med. 2015;192(3):324–36. https://doi.org/10.1164/rccm.201410-1765OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hansmann G, et al. Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm Circ. 2012;2(2):170–81. https://doi.org/10.4103/2045-8932.97603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Aliotta JM, et al. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc Res. 2016;110:319–30. https://doi.org/10.1093/cvr/cvw054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen JY, et al. Therapeutic effects of mesenchymal stem cell-derived microvesicles on pulmonary arterial hypertension in rats. Acta Pharmacol Sin. 2014;35(9):1121–8. https://doi.org/10.1038/aps.2014.61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bandeira E, et al. Therapeutic effects of adipose-tissue-derived mesenchymal stromal cells and their extracellular vesicles in experimental silicosis. Respir Res. 2018;19(1):104. https://doi.org/10.1186/s12931-018-0802-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Abreu SC, Weiss DJ, Rocco PR. Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases? Stem Cell Res Ther. 2016;7:53. https://doi.org/10.1186/s13287-016-0317-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Geiger S, Hirsch D, Hermann FG. Cell therapy for lung disease. Eur Respir Rev. 2017;26(144).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Conflict of interest: F. F. Cruz and P. R. M. Rocco state that there are no conflicts of interest.

Availability of data and materials: Not applicable.

Consent for publication: Not applicable.

Ethics approval and consent to participate: Not applicable.

Authors’ contributions: F.F.C., P.R.M.R. contributed to the literature review and the drafting of the manuscript. All authors read and approved the final manuscript

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cruz, F.F., Rocco, P.R.M. (2019). The Potential of Factors Released from Mesenchymal Stromal Cells as Therapeutic Agents in the Lung. In: Burgess, J., Heijink, I. (eds) Stem Cell-Based Therapy for Lung Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-29403-8_4

Download citation

Publish with us

Policies and ethics