Skip to main content

Body Built-In Sensors for Testing Integrated Circuit Systems for Hardware Trojans

  • Chapter
  • First Online:
  • 510 Accesses

Abstract

Over the last years with the fast technology enhancement, integrated circuit (IC) companies tend to outsource phases of their production chains in order to reduce time-to-market and development costs. Despite the outsourcing benefits through the world, serious security concerns today affect all phases of IC-design flows. Malicious third-party suppliers may, for instance, intentionally cause operational disturbances, disable functions, alter layout masks, and even leak sensitive information from original circuits, all by including mechanisms defined as hardware Trojans (HT). This chapter classifies state-of-the-art testing techniques that analyze side-channel signals for detecting HT. In the following, a body built-in sensor-based technique for detection of HT is detailed by highlighting its three main innovative contributions: (1) current pulses are injected into body terminals of IC system subcircuits; (2) built-in current sensors are connected to body terminals for identifying (or not) the injected currents, providing digital signatures of the subcircuit substrates; (3) resulting digital signatures allow indirect analysis of the impedance of subcircuit substrate, which is modified with the presence of HT, opening a new category of side-channel analysis-based techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aarestad, J., Acharyya, D., Rad, R., & Plusquellic, J. (2010). Detecting Trojans through leakage current analysis using multiple supply Pad I DDQs. IEEE Transactions on Information Forensics and Security 5(4), 893–904.

    Article  Google Scholar 

  2. Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P., & Sunar, B. (2007). Trojan etection using IC fingerprinting. In 2007 IEEE Symposium on Security and Privacy (SP ’07) (pp. 296–310). Piscataway: IEEE.

    Chapter  Google Scholar 

  3. Becker, G., Regazzoni, F., Paar, C., & Burleson, W. (2013). Stealthy dopant-level hardware Trojans. In International Workshop on Cryptographic Hardware and Embedded Systems (pp. 197–214).

    Google Scholar 

  4. Cao, Y., Chang, C. H., & Chen, S. (2014). A cluster-based distributed active current sensing circuit for hardware Trojan detection. IEEE Transactions on Information Forensics and Security, 9(12), 2220–2231.

    Article  Google Scholar 

  5. Cha, B., & Gupta, S. K. (2013). Trojan detection via delay measurements: A new approach to select paths and vectors to maximize effectiveness and minimize cost. In 2013 Design, Automation Test in Europe Conference Exhibition (DATE) (pp. 1265–1270).

    Google Scholar 

  6. Ferreira de Paiva Leite, T., Fesquet, L., & Possamai Bastos, R. (2018). A body built-in cell for detecting transient faults and dynamically biasing subcircuits of integrated systems. Microelectronics Reliability, 88–90, 122–127.

    Google Scholar 

  7. Guimarães, L. A. (2017). Testing Techniques for Detection of Hardware Trojans in Integrated Circuits of Trusted Systems. PhD thesis, Université Grenoble Alpes.

    Google Scholar 

  8. Guimarães, L. A., Possamai Bastos, R., & Fesquet, L. (2017). Detection of layout-level trojans by monitoring substrate with preexisting built-in sensors. In 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (pp. 290–295).

    Google Scholar 

  9. Guimarães, L. A., Possamai Bastos, R., Leite, T. F. P., & Fesquet, L. (2016). Simple tri-state logic trojans able to upset properties of ring oscillators. In 2016 11th International Conference on Proceedings Design Technology of Integrated Systems in Nanoscale Era (DTIS) (pp. 1–6).

    Google Scholar 

  10. Guimarães, M. V., & Torres, F. S. (2016). Automatic layout integration of bulk built-in current sensors for detection of soft errors. In 2016 29th Symposium on Integrated Circuits and Systems Design (SBCCI) (pp. 1–6).

    Google Scholar 

  11. Jin, Y., & Makris, Y. (2008). Hardware Trojan detection using path delay fingerprint. In 2008 IEEE International Workshop on Hardware-Oriented Security and Trust (pp. 51–57).

    Google Scholar 

  12. Kumar, R., Jovanovic, P., Burleson, W., & Polian, I. (2014). Parametric trojans for fault-injection attacks on cryptographic hardware. In 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography (pp. 18–28).

    Google Scholar 

  13. Massey Jr, F. J. (1951). The kolmogorov-smirnov test for goodness of fit. Journal of the American statistical Association, 46(253), 68–78.

    Article  Google Scholar 

  14. Moein, S., et al. (2015). Classification of hardware trojan detection techniques. In 2015 Tenth International Conference on Computer Engineering & Systems (ICCES).

    Google Scholar 

  15. Narasimhan, S., & Bhunia, S. (2012). Hardware Trojan detection (pp. 339–364). New York, NY: Springer.

    Google Scholar 

  16. Narasimhan, S., Du, D., Chakraborty, R. S., Paul, S., Wolff1, F., Papachristou, C., et al. (2010). Multiple-parameter side-channel analysis: A non-invasive hardware Trojan detection approach. In 2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) (pp. 13–18).

    Google Scholar 

  17. Neto, E. H., Ribeiro, I., Vieira, M., Wirth, G., & Kastensmidt, F. L. (2005). Evaluating fault coverage of bulk built-in current sensor for soft errors in combinational and sequential logic. In 2005 18th Symposium on Integrated Circuits and Systems Design (pp. 62–67).

    Google Scholar 

  18. Ngo, X. T., Exurville, I., Bhasin, S., Danger, J. L., Guilley, S., Najm, Z., et al. (2015). Hardware Trojan detection by delay and electromagnetic measurements. In 2015 Design, Automation Test in Europe Conference Exhibition (DATE) (pp. 782–787).

    Google Scholar 

  19. Nowroz, A. N., Hu, K., Koushanfar, F., & Reda, S. (2014). Novel techniques for high-sensitivity hardware Trojan detection using thermal and power maps. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(12), 1792–1805.

    Article  Google Scholar 

  20. Possamai Bastos, R., Guimaraes, L. A., Sill Torres, F., & Fesquet, L. (2018). Architectures of bulk built-in current sensors for detection of transient faults in integrated circuits. Microelectronics Journal, 71, 70–79.

    Article  Google Scholar 

  21. Possamai Bastos, R., Sill Torres, F., Di Natale, G., Flottes, M., & Rouzeyre, B. (2012). Novel transient-fault detection circuit featuring enhanced bulk built-in current sensor with low-power sleep-mode. Microelectronics Reliability, 52(9), 1781–1786.

    Article  Google Scholar 

  22. Salmani, H., Tehranipoor, M., & Karri, R. (2013). On design vulnerability analysis and trust benchmark development. In 2013 IEEE 31st international conference on computer design (ICCD).

    Google Scholar 

  23. Serrano-Gotarredona, R., Camunas-Mesa, L., Serrano-Gotarredona, T., Lenero-Bardallo, J. A., & Linares-Barranco, B. (2007). The stochastic I-pot: A circuit block for programming bias currents. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(9), 760–764.

    Article  Google Scholar 

  24. Tehranipoor, M., & Koushanfar, F. (2010). A survey of hardware Trojan taxonomy and detection. IEEE Design Test of Computers, 27(1), 10–25.

    Article  Google Scholar 

  25. Wang, L., Xie, H., & Luo, H. (2013). Malicious circuitry detection using transient power analysis for IC security. In 2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE) (pp. 1164–1167).

    Google Scholar 

  26. Wang, X., Tehranipoor, M., & Plusquellic, J. (2008). Detecting malicious inclusions in secure hardware: Challenges and solutions. In 2008 IEEE International Workshop on Hardware-Oriented Security and Trust (pp. 15–19).

    Google Scholar 

  27. Zhang, X., & Tehranipoor, M. (2011). RON: An on-chip ring oscillator network for hardware Trojan detection. In 2011 Design, Automation Test in Europe (pp. 1–6).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bastos, R.P., Torres, F.S. (2020). Body Built-In Sensors for Testing Integrated Circuit Systems for Hardware Trojans. In: On-Chip Current Sensors for Reliable, Secure, and Low-Power Integrated Circuits. Springer, Cham. https://doi.org/10.1007/978-3-030-29353-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29353-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29352-9

  • Online ISBN: 978-3-030-29353-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics