Skip to main content

Architectures of Body Built-In Current Sensors for Detection of Transient Faults

  • Chapter
  • First Online:
  • 504 Accesses

Abstract

Among hardware-level techniques for fault and error detection, the Body Built-In Current Sensors (BBICS) offer a compact and effective alternative for detecting single, short-duration, long-duration, and multiple (and simultaneous) transient faults. This kind of sensor combines the high fault detection effectiveness of costly fault-tolerance schemes (e.g. duplication with comparison) with the low-area and low-power overheads of less effective mitigation techniques such as time redundancy approaches. In addition, these sensors are perfectly suitable for IC system design flows based on CMOS standard cells of commercial libraries. This chapter firstly presents the fundamentals and the history of built-in current sensors, after it classifies and describes the different state-of-the-art BBICS architectures. Moreover, this chapter defines what we call as the reference sensitivity of a sensor (or a memory element) in detecting single transient faults, and it compare state-of-the-art BBICS architectures in terms of their sensitivity in detecting transient faults and area overhead.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Athan, S. P., et al. (1996). A novel built-in current sensor for IDDQ testing of deep submicron CMOS ICS. In Proceedings IEEE (VTS’96) (pp. 118–123).

    Google Scholar 

  2. Borrel, N., Champeix, C., Kussener, E., Rahajandraibe, W., Lisart, M., Sarafianos, A., et al. (2015). Influence of triple-well technology on laser fault injection and laser sensor efficiency. In 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS) (pp. 85–90).

    Google Scholar 

  3. Cha, H., & Patel, J. H. (1993). A logic-level model for /spl alpha/-particle hits in CMOS circuits. In Proceedings of 1993 IEEE International Conference on Computer Design ICCD’93 ( pp. 538–542).

    Google Scholar 

  4. Champeix, C., Borrel, N., Dutertre, J. M., Robisson, B., Lisart, M., & Sarafianos, A. (2015). Experimental validation of a bulk built-in current sensor for detecting laser-induced currents. In 2015 IEEE 21st International On-Line Testing Symposium (IOLTS) (pp. 150–155).

    Google Scholar 

  5. Champeix, C., Dutertre, J., Pouget, V., Robisson, B., Lisart, M., Borrel, N., et al. (2016). Laser testing of a double-access BBICS architecture with improved SEE detection capabilities. In 2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS) (pp. 1–4).

    Google Scholar 

  6. Chen, L., Zhang, Z., & Wang, T. (2012). Methods and devices for detecting single-event transients. No. US20120242373A1.

    Google Scholar 

  7. Chen, L., Zhang, Z., & Wang, T. (2013). Methods and devices for detecting single-event transients. No. US8451028B2.

    Google Scholar 

  8. Dodd, P. E., Shaneyfelt, M. R., Felix, J. A., & Schwank, J. R. (2004). Production and propagation of single-event transients in high-speed digital logic ICs. IEEE Transactions on Nuclear Science, 51(6), 3278–3284.

    Article  Google Scholar 

  9. Dutertre, J., Possamai Bastos, R., Potin, O., Flottes, M., Rouzeyre, B., Natale, G. D., et al. (2014). Improving the ability of bulk built-in current sensors to detect single event effects by using triple-well CMOS. Microelectronics Reliability, 54(9), 2289 – 2294.

    Article  Google Scholar 

  10. Dutertre, J.-M., et al. (2013). Sensitivity tuning of a bulk built-in current sensor for optimal transient-fault detection. Microelectronics Reliability, 53(9), 1320–1324.

    Article  Google Scholar 

  11. Feltham, D. B. I., Nigh, P. J., Carley, L. R., & Maly, W. (1988). Current sensing for built-in testing of CMOS circuits. In Proceedings 1988 IEEE International Conference on Computer Design: VLSI (pp. 454–457).

    Google Scholar 

  12. Ferlet-Cavrois, V., Paillet, P., Gaillardin, M., Lambert, D., Baggio, J., Schwank, J. R., et al. (2006). Statistical analysis of the charge collected in soi and bulk devices under heavy lon and proton irradiation—implications for digital sets. IEEE Transactions on Nuclear Science, 53(6), 3242–3252.

    Article  Google Scholar 

  13. Gill, B., Nicolaidis, M., Wolff, F., Papachristou, C., & Garverick, S. (2005). An efficient BICS design for SEUs detection and correction in semiconductor memories. In Design, Automation and Test in Europe (Vol. 1, pp. 592–597).

    Google Scholar 

  14. Guimarães, M. V., & Torres, F. S. (2016). Automatic layout integration of bulk built-in current sensors for detection of soft errors. In 2016 29th Symposium on Integrated Circuits and Systems Design (SBCCI) (pp. 1–6).

    Google Scholar 

  15. Karnik, T., & Hazucha, P. (2004). Characterization of soft errors caused by single event upsets in CMOS processes. IEEE Transactions on Dependable and Secure Computing, 1(2), 128–143.

    Article  Google Scholar 

  16. Kim, C. H., & Quisquater, J. J. (2007). Faults, injection methods, & fault attacks. IEEE Design Test of Computers, 24(6), 544–545.

    Article  Google Scholar 

  17. Lisboa, C. A., Kastensmidt, F. L., Neto, E. H., Wirht, G., & Carro, L. (2007). Using built-in sensors to cope with long duration transient faults in future technologies. In 2007 IEEE International Test Conference (pp. 1–10).

    Google Scholar 

  18. Lo, J., et al. (1992). Design of static CMOS self-checking circuits using built-in current sensing. In Proceedings IEEE (FTCS’92) (pp. 104–111).

    Google Scholar 

  19. Maly, W., & Nigh, P. (1988). Built-in current testing-feasibility study. In [1988] IEEE International Conference on Computer-Aided Design (ICCAD-89) Digest of Technical Papers (pp. 340–343).

    Google Scholar 

  20. Matsuda, K., Fujii, T., Shoji, N., Sugawara, T., Sakiyama, K., Hayashi, Y. I., et al. (2018). A 286f2/cell distributed bulk-current sensor and secure flush code eraser against laser fault injection attack. In 2018 IEEE International Solid - State Circuits Conference - (ISSCC) (pp. 352–354).

    Google Scholar 

  21. Matsuda, K., Miura, N., Nagata, M., Hayashi, Y., Fujii, T., & Sakiyama, K. (2016). On-chip substrate-bounce monitoring for laser-fault countermeasure. In 2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST) (pp. 1–6).

    Google Scholar 

  22. Melo, J. G. M., & Sill Torres, F. (2016). Exploration of noise impact on integrated bulk current sensors. Journal of Electronic Testing, Theory and Applications (JETTA), 32(2), 163–173.

    Article  Google Scholar 

  23. Melo, J. G. M., Sill Torres, F., & Bastos, R. P. (2015). Exploration of noise robustness and sensitivity of bulk current sensors for soft error detection. In 2015 6th European Workshop on Proceedings CMOS Variability (VARI) (pp. 13–18).

    Google Scholar 

  24. Messenger, G. C. (1982). Collection of charge on junction nodes from Ion tracks. IEEE Transactions on Nuclear Science, 29(6), 2024–2031.

    Article  Google Scholar 

  25. Narsale, A., & Huang, M. C. (2009). Variation-tolerant hierarchical voltage monitoring circuit for soft error detection. In 2009 10th International Symposium on Quality Electronic Design (pp. 799–805).

    Google Scholar 

  26. Ndai, P., Agarwal, A., & Roy, a. K. (2005). A soft error monitor using switching current detection. In 2005 International Conference on Computer Design (pp. 185–190).

    Google Scholar 

  27. Neto, E. H., et al. (2005). Evaluating fault coverage of bulk built-in current sensor for soft errors in combinational and sequential logic. In Proceedings Symposium on Integrated Circuits and Systems Design (SBCCI’12) (pp. 62–67).

    Google Scholar 

  28. Neto, E. H., Kastensmidt, F. L., & Wirth, G. (2008). Tbulk-BICS: A built-in current sensor robust to process and temperature variations for soft error detection. IEEE Transactions on Nuclear Science, 55(4), 2281–2288.

    Article  Google Scholar 

  29. Neto, E. H., Kastensmidt, F. L., & Wirth, G. I. (2007). Tbulk-BICS: A built-in current sensor robust to process and temperature variations for SET detection. In 2007 9th European Conference on Radiation and Its Effects on Components and Systems (pp. 1–8).

    Google Scholar 

  30. Neto, E. H., Ribeiro, I., Vieira, M., Wirth, G., & Kastensmidt, F. L. (2005). Evaluating fault coverage of bulk built-in current sensor for soft errors in combinational and sequential logic. In 2005 18th Symposium on Integrated Circuits and Systems Design (pp. 62–67).

    Google Scholar 

  31. Neto, E. H., Ribeiro, I., Vieira, M., Wirth, G., & Kastensmidt, F. L. (2006). Using bulk built-in current sensors to detect soft errors. IEEE Micro, 26(5), 10–18.

    Article  Google Scholar 

  32. Possamai Bastos, R., Dutertre, J.-M., & Sill Torres, F. (2014). Comparison of bulk built-in current sensors in terms of transient-fault detection sensitivity. In 2014 5th European Workshop on Proceedings CMOS Variability (VARI) (pp. 1–6).

    Google Scholar 

  33. Possamai Bastos, R., et al. (2012). Novel transient-fault detection circuit featuring enhanced bulk built-in current sensor with low-power sleep-mode. Microelectronics Reliability, 52(9–10), 1781–1786.

    Article  Google Scholar 

  34. Possamai Bastos, R., et al. (2013). A bulk built-in sensor for detection of fault attacks. In Proceedings. IEEE International Symposium on Hardware-Oriented Security and Trust (HOST’13) (pp. 51–54).

    Google Scholar 

  35. Possamai Bastos, R., et al. (2013). A single built-in sensor to check pull-up and pull-down CMOS networks against transient faults. In Proceedings International Workshop on Power and Timing Modeling, Optimization, and Simulation (PATMOS’13) (pp. 157–163).

    Google Scholar 

  36. Possamai Bastos, R., Guimaraes, L. A., Sill Torres, F., & Fesquet, L. (2018). Architectures of bulk built-in current sensors for detection of transient faults in integrated circuits. Microelectronics Journal, 71, 70–79.

    Article  Google Scholar 

  37. Possamai Bastos, R., Sill Torres, F., Di Natale, G., Flottes, M., & Rouzeyre, B. (2012). Novel transient-fault detection circuit featuring enhanced bulk built-in current sensor with low-power sleep-mode. Microelectronics Reliability, 52(9), 1781–1786.

    Article  Google Scholar 

  38. Rajalakshmi, T. R., & Sudhakar, R. (2016). A novel carbon nanotubefet based bulk built-in current sensor for single event upset detection. Sadhana, 41(5), 489–495.

    Google Scholar 

  39. Sarafianos, A., Fort, J., Champeix, C., Dutertre, J.-M., & Borrel, N. (2017). Secure electronic chip. No. US20170116439A1.

    Google Scholar 

  40. Sill Torres, F., & Possamai Bastos, R. (2012). Robust modular bulk built-in current sensors for detection of transient faults. In Proceedings. Symposium on Integrated Circuits and Systems Design (SBCCI’12) (pp. 1–6).

    Google Scholar 

  41. Sill Torres, F., & Possamai Bastos, R. (2013). Detection of transient faults in nanometer technologies by using modular built-in current sensors. Journal of Integrated Circuits and Systems (JICS), 8(2), 89–97.

    Google Scholar 

  42. Simionovski, A. (2012). Sensor de corrente transiente para detecção do SET com célula de memória dinâmica. PhD thesis, PPGEE, DELET, Escola de Engenharia, UFRGS.

    Google Scholar 

  43. Simionovski, A. (2018). Sensor de corrente transiente para um sistema de proteção de circuitos integrados contra erros induzidos por radiação ionizante. PhD thesis, PPGEE, DELET, Escola de Engenharia, UFRGS.

    Google Scholar 

  44. Simionovski, A., Vaz, R. G., Gonçalez, O. L., & Wirth, G. (2015). Impact of total ionizing dose on bulk built-in current sensors with dynamic storage cell. Journal of Electronic Testing, 31(4), 411–417.

    Article  Google Scholar 

  45. Simionovski, A., & Wirth, G. (2012). A bulk built-in current sensor for set detection with dynamic memory cell. In Proceeding IEEE Latin American Symposium on Circuits and Systems (LASCAS’12) (pp. 1–4).

    Google Scholar 

  46. Simionovski, A., & Wirth, G. (2014). Simulation evaluation of an implemented set of complementary bulk built-in current sensors with dynamic storage cell. IEEE Transactions on Device and Materials Reliability, 14(1), 255–261.

    Article  Google Scholar 

  47. Simionovski, A., & Wirth, G. (2015). Adding a self-reset feature to the bulk-bics with dynamic storage cell. Microelectronics Reliability, 55(12), 2748–2753.

    Article  Google Scholar 

  48. Simionovski, A., Wirth, G. I., Schrimpf, R. D., & Bhuva, B. L. (2018). A TCAD evaluation of a single Bulk-BICS with integrative memory cell. Microelectronics Journal, 80, 62–68.

    Article  Google Scholar 

  49. Vargas, F., & Nicolaidis, M. (1994). SEU-tolerant SRAM design based on current monitoring. In Proceedings of IEEE 24th International Symposium on Fault-Tolerant Computing (FTCS’94) (pp. 106–115).

    Google Scholar 

  50. Viera, R. A. C., Dutertre, J. M., Flottes, M. L., Potin, O., Natale, G. D., Rouzeyre, B., et al. (2018). Assessing body built-in current sensors for detection of multiple transient faults. Microelectronics Reliability, 88–90, 128–134.

    Article  Google Scholar 

  51. Wang, H.-B., Liu, R., Chen, L., Bi, J.-S., Li, M.-L., & Li, Y.-Q. (2015). A novel built-in current sensor for N-WELL SET detection. Journal of Electronic Testing, 31(4), 395–401.

    Article  Google Scholar 

  52. Wirth, J. L., & Rogers, S. C. (1964). The transient response of transistors and diodes to ionizing radiation. IEEE Transactions on Nuclear Science, 11(5), 24–38.

    Article  Google Scholar 

  53. Wirth, G. (2008). Bulk built in current sensors for single event transient detection in deep-submicron technologies. Microelectronics Reliability, 48(5), 710–715.

    Article  Google Scholar 

  54. Wirth, G., & Fayomi, C. (2007). The bulk built in current sensor approach for single event transient detection. In Proceedings International Symposium on System-on-Chip (ISSOC’07) (pp. 1–4).

    Google Scholar 

  55. Zhang, Z., et al. (2010). A new bulk built-in current sensing circuit for single-event transient detection. In Proceedings Canadian Conference on Electrical and Computer Engineering (CCECE’10) (pp. 1–4).

    Google Scholar 

  56. Zhang, Z., Ren, Y., Chen, L., Gaspard, N. J., Witulski, A. F., Holman, T. W., et al. (2013). A bulk built-in voltage sensor to detect physical location of single-event transients. Journal of Electronic Testing, 29(2), 249–253.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bastos, R.P., Torres, F.S. (2020). Architectures of Body Built-In Current Sensors for Detection of Transient Faults. In: On-Chip Current Sensors for Reliable, Secure, and Low-Power Integrated Circuits. Springer, Cham. https://doi.org/10.1007/978-3-030-29353-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29353-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29352-9

  • Online ISBN: 978-3-030-29353-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics