Skip to main content

Structured Populations

  • Chapter
  • First Online:
Integrodifference Equations in Spatial Ecology

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 49))

  • 817 Accesses

Abstract

So far, we have treated populations as homogeneous: all individuals were assumed to be identical with respect to reproduction and dispersal. We only modeled the dynamics of a single density function. In reality, most populations are heterogeneous in many ways. Individuals differ with respect to age, size, gender, and other attributes, and their reproductive and dispersal behavior may depend on these attributes. The nonspatial dynamics of populations with complex life cycles have been successfully described by matrix models. In this chapter, we introduce and study spatially explicit matrix models to generalize the simple IDE to stage-structured populations. We present an in-depth analysis of the critical patch-size problem and the spreading speed for these equations, including several proofs that we omitted in the scalar case in earlier chapters. Throughout the chapter, we use a simple two-stage model for juveniles and adults to illustrate the theory. We close with an overview of the rich literature of applications of structured IDEs to real-world systems, in particular to species invasions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Perron–Frobenius theorem holds under the more general condition that B is irreducible. A matrix is irreducible if it is not conjugate to a block upper-triangular matrix (Caswell 2001). A typical example for a reducible matrix arises in populations with post-reproductive stages. Since these stages do not contribute to reproduction, their contribution to the pre-reproductive stages is zero. If we order the variables in the equations such that the post-reproductive stages are first, the resulting matrix will be block upper-triangular. In terms of the life-cycle graph, a matrix is reducible if there is a proper subset of vertices from which there are no edges (transitions) to nodes outside that subset.

  2. 2.

    A function on some interval is piecewise continuous if the interval can be written as a finite number of subintervals such that the function is continuous on each open subinterval and has a finite limit at each endpoint of each subinterval.

References

  • Alzoubi, M. (2007). Equilibria in a dispersal model for structured populations. Turkish Journal of Mathematics, 31, 421–433.

    MathSciNet  MATH  Google Scholar 

  • Alzoubi, M. (2010a). The net reproductive number and bifurcation in an integro-difference system of equations. Applied Mathematical Sciences, 4(4), 191–200.

    MathSciNet  MATH  Google Scholar 

  • Alzoubi, M. (2010b). Stability and bifurcation in a system of integro-difference equations model. Applied Mathematical Sciences, 4(64), 3175–3188.

    MathSciNet  MATH  Google Scholar 

  • Amor, D., & Fort, J. (2009). Fronts from two-dimensional dispersal kernels: Beyond the nonoverlapping-generations model. Physical Review E, 80, 051918.

    Article  Google Scholar 

  • Bateman, A., Buttenschön, A., Erickson, K., & Marulis, N. (2017). Barnacles vs bullies: Modelling biocontrol of the invasive European green crab using a castrating barnacle parasite. Theoretical Ecology, 10, 305–318.

    Article  Google Scholar 

  • Bateman, A., Neubert, M., Krkos̆ek, M., & Lewis, M. (2015). Generational spreading speed and the dynamics of population range expansion. The American Naturalist, 186, 362–375.

    Google Scholar 

  • Buckley, Y., Brockerhoff, E. G., Langer, L., Ledgard, N. J., North, H. C., & Rees, M. (2005). Slowing down a pine invasion despite uncertainty in demography and dispersal. Journal of Applied Ecology, 42, 1020–1030.

    Article  Google Scholar 

  • Bullock, J., Pywell, R., & Coulson-Phillips, S. (2008). Managing plant population spread: Prediction and analysis using a simple model. Ecological Applications, 18(4), 945–953.

    Article  Google Scholar 

  • Bullock, J., White, S., Prudhomme, C., Tansey, C., Perea, R., & Hooftman, D. (2012). Modelling spread of British wind-dispersed plants under future wind speeds in a changing climate. Journal of Ecology, 100, 104–115.

    Article  Google Scholar 

  • Caplat, P., Coutts, S., & Buckley, Y. (2012). Modeling population dynamics, landscape structure, and management decisions for controlling the spread of invasive plants. Annals of the New York Academy of Sciences, 1249, 72–83.

    Article  Google Scholar 

  • Caplat, P., Nathan, R., & Buckley, Y. (2012). Seed terminal velocity, wind turbulence, and demography drive the spread of an invasive tree in an analytical model. Ecology, 93(2), 368–377.

    Article  Google Scholar 

  • Caswell, H. (2001). Matrix population models. Sunderland: Sinauer Associates.

    Google Scholar 

  • Caswell, H., Lensink, R., & Neubert, M. (2003). Demography and dispersal: Life table response experiments for invasion speed. Ecology, 84(8), 1968–1978.

    Article  Google Scholar 

  • Cushing, J. (2014). Backward bifurcations and strong Allee effects in matrix models for the dynamics of structured populations. Journal of Biological Dynamics, 8(1), 57–73.

    Article  MathSciNet  Google Scholar 

  • Fagan, W., & Lutscher, F. (2006). Average dispersal success: Linking home range, dispersal and metapopulation dynamics to reserve design. Ecological Applications, 16(2), 820–828.

    Article  Google Scholar 

  • Fang, J., & Zhao, X.-Q. (2014). Traveling waves for monotone semiflows with weak compactness. SIAM Journal on Mathematical Analysis, 46(6), 3678–3704.

    Article  MathSciNet  MATH  Google Scholar 

  • Galliard, J., Marquis, O., & Massot, M. (2010). Cohort variation, climate effects and population dynamics in a short lived lizard. Journal of Animal Ecology, 79, 1296–1307.

    Article  Google Scholar 

  • Garnier, A., & Lecomte, J. (2006). Using a spatial and stage-structured invasion model to assess the spread of feral populations of transgenic oilseed rape. Ecological Modelling, 194, 141–149.

    Article  Google Scholar 

  • Garnier, A., Pivard, S., & Lecomte, J. (2008). Measuring and modelling anthropogenic secondary seed dispersal along roadverges for feral oilseed rape. Basic and Applied Ecology, 9, 533–541.

    Article  Google Scholar 

  • Gharouni, A., Barbeau, M., Locke, A., Wang, L., & Watmough, J. (2015). Sensitivity of invasion speed to dispersal and demography: An application of spreading speed theory to the green crab invasion on the northwest Atlantic coast. Marine Ecology Progress Series, 541, 135–150.

    Article  Google Scholar 

  • Gruess, A., Kaplan, D., & Hart, D. (2011). Relative impacts of adult movement, larval dispersal and harvester movement on the effectiveness of reserve networks. PLoS ONE, 6(5), e19960.

    Article  Google Scholar 

  • Heavilin, J., & Powell, J. (2008). A novel method of fitting spatio-temporal models to data, with applications to the dynamics of mountain pine beetles. Natural Resource Modeling, 21(4), 489–501.

    Article  MathSciNet  MATH  Google Scholar 

  • Jacquemyn, H., Brys, R., & Neubert, M. (2005). Fire increases invasive spread of molinia caerulea mainly through changes in demographic parameters. Ecological Applications, 55(6), 449–460.

    Google Scholar 

  • Jin, W., Smith, H., & Thieme, H. (2016). Persistence versus extinction for a class of discrete-time structured population models. Journal of Mathematical Biology, 72, 821–850.

    Article  MathSciNet  MATH  Google Scholar 

  • Jongejans, E., Shea, K., Skarpaas, O., Kelly, D., Sheppard, A., & Woodburn, T. (2008). Dispersal and demography contributions to population spread of carduus nutans in its native and invaded ranges. Journal of Ecology, 96, 687–697.

    Article  Google Scholar 

  • Krasnosel’skii, M. A. (1964). Positive solutions of operator equations. Groningen: Noordhoff LTD.

    MATH  Google Scholar 

  • Krasnosel’skii, M. A., & Zabreiko, P. P. (1984). Geometrical methods of nonlinear analysis. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Krkos̆ek, M., Lauzon-Guay, J., & Lewis, M. (2007). Relating dispersal and range expansion of California sea otters. Theoretical Population Biology, 71, 401–407.

    Google Scholar 

  • Lamoureaux, S., Basse, B., Bourdôt, G., & Saville, D. (2015). Comparison of management strategies for controlling nassella trichotoma in modified tussock grasslands in New Zealand: A spatial and economic analysis. Weed Research, 55, 449–460.

    Article  Google Scholar 

  • Le, T., Lutscher, F., & Van Minh, N. (2011). Traveling wave dispersal in partially sedentary age-structured populations. Acta Mathematica Vietnamica, 2(36), 319–330.

    MathSciNet  MATH  Google Scholar 

  • Le Corff, J., & Horvitz, C. (2005). Population growth versus population spread of an ant-dispersed neotropical herb with a mixed reproductive strategy. Ecological Modelling, 188, 41–51.

    Article  Google Scholar 

  • Liang, X., & Zhao, X.-Q. (2007). Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 60(1), 1–40.

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, X., & Zhao, X.-Q. (2010). Spreading speeds and traveling waves for abstract monostable evolution systems. Journal of Functional Analysis, 259, 857–903.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, G., & Li, W.-T. (2010). Spreading speeds and traveling wavefronts for second order integrodifference equations. Journal of Mathematical Analysis and Applications, 361(2), 520–532.

    Article  MathSciNet  MATH  Google Scholar 

  • Lui, R. (1989a). Biological growth and spread modeled by systems of recursions. I Mathematical theory. Mathematical Biosciences, 93, 269–295.

    Article  MathSciNet  MATH  Google Scholar 

  • Lui, R. (1989b). Biological growth and spread modeled by systems of recursions. II Biological theory. Mathematical Biosciences, 93, 297–312.

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher, F., & Lewis, M. (2004). Spatially-explicit matrix models. A mathematical analysis of stage-structured integrodifference equations. Journal of Mathematical Biology, 48, 293–324.

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher, F., & Van Minh, N. (2013). Spreading speeds and traveling waves in discrete models of biological populations with sessile stages. Nonlinear Analysis: Real World Applications, 14(1), 495–506.

    Article  MathSciNet  MATH  Google Scholar 

  • Marculis, N., & Lui, R. (2015). Modelling the biological invasion of Carcinus maenas (the European green crab). Journal of Biological Dynamics, 10(1), 140–163.

    Article  MathSciNet  Google Scholar 

  • Matlaga, D., & Davis, A. (2013). Minimizing invasive potential of miscanthus × giganteus grown for bioenergy: Identifying demographic thresholds for population growth and spread. Journal of Applied Ecology, 50, 479–487.

    Article  Google Scholar 

  • Meyer, K. (2012). A spatial age-structured model of perennial plants with a seed bank. Ph.D. Thesis, University of Louisville.

    Google Scholar 

  • Meyer, K., & Li, B. (2013). A spatial model of plants with an age-structured seed bank and juvenile stage. SIAM Journal on Applied Mathematics, 73(4), 1676–1702.

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, T., Shaw, K., Inouye, B., & Neubert, M. (2011). Sex-biased dispersal and the speed of two-sex invasions. The American Naturalist, 177(5), 549–561.

    Article  Google Scholar 

  • Miller, T., & Tenhumberg, B. (2010). Contributions of demography and dispersal parameters to the spatial spread of a stage-structured insect invasion. Ecological Applications, 20(3), 620–633.

    Article  Google Scholar 

  • Neubert, M., & Caswell, H. (2000a). Demography and dispersal: Calculation and sensitivity analysis of invasion speeds for structured populations. Ecology, 81(6), 1613–1628.

    Article  Google Scholar 

  • Neubert, M., & Caswell, H. (2000b). Density-dependent vital rates and their population dynamic consequences. Journal of Mathematical Biology, 41, 103–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Neubert, M., & Parker, I. (2004). Projecting rates of spread for invasive species. Risk Analysis, 24(4), 817–831.

    Article  Google Scholar 

  • Powell, J., Slapničar, I., & van der Werf, W. (2005). Epidemic spread of a lesion-forming plant pathogen – analysis of a mechanistic model with infinite age structure. Linear Algebra and its Applications, 398, 117–140.

    Article  MathSciNet  MATH  Google Scholar 

  • Pringle, J., Lutscher, F., & Glick, E. (2009). Going against the flow: The effect of non-Gaussian dispersal kernels and reproduction over multiple generations. Marine Ecology Progress Series, 337, 13–17.

    Article  Google Scholar 

  • Robertson, S. (2009). Spatial patterns in stage-structured populations with density dependent dispersal. Ph.D. Thesis, The University of Arizona.

    Google Scholar 

  • Robertson, S., & Cushing, J. (2011). Spatial segregation in stage-structured populations with an application to Tribolium. Journal of Biological Dynamics, 5(5), 398–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Robertson, S., & Cushing, J. (2012). A bifurcation analysis of stage-structured density dependent integrodifference equations. Journal of Mathematical Analysis and Applications, 288, 490–499.

    Article  MathSciNet  MATH  Google Scholar 

  • Robertson, S., Cushing, J., & Costantino, R. (2012). Life stages: Interactions and spatial patterns. Bulletin of Mathematical Biology, 74, 491–508.

    Article  MathSciNet  MATH  Google Scholar 

  • Shea, K., Jongejans, E., Skarpaas, O., Kelly, D., & Sheppard, A. (2010). Optimal management strategies to control local population growth or population spread may not be the same. Ecological Applications, 20(4), 1148–1161.

    Article  Google Scholar 

  • Skelsey, P., Kessel, G., Rossing, W., & van der Werf, W. (2009a). Parameterization and evaluation of a spatiotemporal model of the potato late blight pathosystem. Phytopathology, 99, 290–300.

    Article  Google Scholar 

  • Skelsey, P., Rossing, W., Kessel, G., Powell, J., & van der Werf, W. (2005). Influence of host diversity on development of epidemics: An evaluation and elaboration of mixture theory. Phytopatology, 95(4), 328–338.

    Article  Google Scholar 

  • Skelsey, P., Rossing, W., Kessel, G., & van der Werf, W. (2009b). Scenario approach for assessing the utility of dispersal information in decision support for aerially spread plant pathogens, applied to phytophthora infestans. Phytopathology, 99, 887–895.

    Article  Google Scholar 

  • Skelsey, P., Rossing, W., Kessel, G., & van der Werf, W. (2010). Invasion of phytophthora infestans at the landscape level: How do spatial scale and weather modulate the consequences of spatial heterogeneity in host resistance? Phytopathology, 100, 1146–1161.

    Article  Google Scholar 

  • Smith, C., Giladi, I., & Lee, Y.-S. (2009). A reanalysis of competing hypotheses for the spread of the California sea otter. Ecology, 90(9), 2503–2512.

    Article  Google Scholar 

  • Soons, M., & Bullock, J. (2008). Non-random seed abscission, long-distance wind dispersal and plant migration rates. Journal of Ecology, 96, 581–590.

    Article  Google Scholar 

  • Travis, J., Harris, C., Park, K., & Bullock, J. (2011). Improving prediction and management of range expansions by combining analytical and individual-based modelling approaches. Methods in Ecology and Evolution, 2, 477–488.

    Article  Google Scholar 

  • Van Kirk, R., & Lewis, M. (1997). Integrodifference models for persistence in fragmented habitats. Bulletin of Mathematical Biology, 59(1), 107–137.

    Article  MATH  Google Scholar 

  • Vellend, M., Knight, T., & Drake, J. (2006). Antagonistic effects of seed dispersal and herbivory on plant migration. Ecology Letters, 9, 319–326.

    Article  Google Scholar 

  • Warner, D., & Shine, R. (2008). Determinants of dispersal distance in free-ranging juvenile lizards. Ethology, 114(4), 361–368.

    Article  Google Scholar 

  • Weinberger, H. (1982). Long-time behavior of a class of biological models. SIAM Journal on Mathematical Analysis, 13, 353–396.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, R., Jongejans, E., & Shea, K. (2011). Warming increases the spread of an invasive thistle. PLoS ONE, 6(6), e21725.

    Article  Google Scholar 

  • Zhao, X.-Q. (1996). Global attractivity and stability in some monotone discrete dynamical systems. Bulletin of the Australian Mathematical Society, 53, 305–324.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, X.-Q. (2003). Dynamical systems in population biology. CMS books in mathematics. Berlin: Springer.

    Book  Google Scholar 

  • Zhao, X.-Q. (2009). Spatial dynamics of some evolution systems in biology. In Y. Du, H. Ishii, & W.-Y. Lin (Eds.), Recent progress on reaction-diffusion systems and viscosity solutions (pp. 332–363). Singapore: World Scientific.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lutscher, F. (2019). Structured Populations. In: Integrodifference Equations in Spatial Ecology. Interdisciplinary Applied Mathematics, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-030-29294-2_13

Download citation

Publish with us

Policies and ethics