Skip to main content

Applications

  • Chapter
  • First Online:
  • 800 Accesses

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 49))

Abstract

The theory studied so far has considered somewhat idealized population dynamics. In this chapter, we present various extensions of this theory to include more realistic conditions and several applications of scalar IDEs to real biological systems. Quite naturally, as soon as we want to model any particular scenario with the simple IDE in (2.1), we find that the model may need to be adjusted in various ways to more accurately describe biological reality. The first example deals with dispersal-induced mortality. Next, we consider the effects of biased dispersal in rivers and along coastlines in the context of the drift paradox. Closely related is the third topic of moving-habitat models, where we incorporate certain aspects of climate change into the equations. We then take a closer look at populations where individuals differ in their dispersal behavior: in one extreme, some individuals could be immobile (sessile); in the other extreme, some individuals may disperse much farther than the majority. We discuss the latter aspects in the context of Reid’s paradox of rapid tree migration. We take a closer look at how to model Allee effects. Finally, we present some applications to two-dimensional domains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen, E., Allen, L., & Gilliam, X. (1996). Dispersal and competition models for plants. Journal of Mathematical Biology, 34, 455–481.

    Article  MathSciNet  MATH  Google Scholar 

  • Barton, N., & Turelli, M. (2011). Spatial waves of advance with bistable dynamics: Cytoplasmic and genetic analogues of Allee effects. The American Naturalist, 178, E48–E75.

    Article  Google Scholar 

  • Bouhours, J., & Lewis, M. (2016). Climate change and integrodifference equations in a stochastic environment. Bulletin of Mathematical Biology, 78, 1866–1903.

    Article  MathSciNet  MATH  Google Scholar 

  • Britton-Simmons, K., & Abbott, K. (2008). Short- and long-term effects of disturbance and propagule pressure on a biological invasion. Journal of Ecology, 96, 68–77.

    Article  Google Scholar 

  • Buckley, Y., Brockerhoff, E. G., Langer, L., Ledgard, N. J., North, H. C., & Rees, M. (2005). Slowing down a pine invasion despite uncertainty in demography and dispersal. Journal of Applied Ecology, 42, 1020–1030.

    Article  Google Scholar 

  • Bullock, J., & Clarke, R. (2000). Long distance seed dispersal by wind: Measuring and modelling the tail of the curve. Oecologia, 124, 506–521.

    Article  Google Scholar 

  • Byers, J., & Pringle, J. (2006). Going against the flow: Retention, range limits and invasions in advective environments. Marine Ecology Progress Series, 313, 27–41.

    Article  Google Scholar 

  • Clark, J. (1998). Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. The American Naturalist, 152(2), 204–224.

    Article  Google Scholar 

  • Clark, J., Fastie, C., Hurtt, G., Jackson, S., Johnson, C., King, G., et al. (1998a). Reid’s paradox of rapid plant migration. Bioscience, 48(1), 13–24.

    Article  Google Scholar 

  • Clark, J., Macklin, E., & Wood, L. (1998b). Stages and spatial scales of recruitment limitation in southern Appalachian forests. Ecological Monographs, 68(2), 213–235.

    Article  Google Scholar 

  • Clark, J., Silman, M., Kern, R., Macklin, E., & HilleRisLambers, J. (1999). Seed dispersal near and far: Patterns across temperate and tropical forests. Ecology, 80(5), 1475–1494.

    Article  Google Scholar 

  • Coutinho, R., Godoy, W., & Kraenkel, R. (2012). Integrodifference model for blowfly invasion. Theoretical Ecology, 5, 363–371.

    Article  Google Scholar 

  • Dewhirst, S., & Lutscher, F. (2009). Dispersal in heterogeneous habitats: Thresholds, spatial scales and approximate rates of spread. Ecology, 90(5), 1338–1345.

    Article  Google Scholar 

  • Drury, K., & Candelaria, J. (2008). Using model identification to analyze spatially explicit data with habitat, and temporal, variability. Ecological Modelling, 214, 305–315.

    Article  Google Scholar 

  • Etienne, R., Wertheim, B., Hemerik, L., Schneider, P., & Powell, J. (2002). The interaction between dispersal, the Allee effect and scramble competition affects population dynamics. Ecological Modelling, 148, 153–168.

    Article  Google Scholar 

  • Fedotov, S. (2001). Front propagation into an unstable state of reaction-transport systems. Physical Review Letters, 86(5), 926–929.

    Article  Google Scholar 

  • Fort, J. (2007). Fronts from complex two-dimensional dispersal kernels: Theory and application to Reid’s paradox. Journal of Applied Physics, 101, 094701.

    Article  Google Scholar 

  • Fort, J., Pérez-Losada, J., & Isern, N. (2007). Fronts from integrodifference equations and persistence effects on the neolithic transition. Physical Review E, 76, 031913.

    Article  MathSciNet  Google Scholar 

  • Fuller, E., Rush, E., & Pinsky, M. (2015). The persistence of populations facing climate shifts and harvest. Ecosphere, 6(9), 153.

    Article  Google Scholar 

  • Gagnon, K., Peacock, S., Yu Jin, Y., & Lewis, M. (2015). Modelling the spread of the invasive alga codium fragile driven by long-distance dispersal of buoyant propagules. Ecological Modelling, 316, 111–121.

    Article  Google Scholar 

  • Gharouni, A., Barbeau, M., Chassé, J., Wang, L., & Watmough, J. (2017). Stochastic dispersal increases the rate of upstream spread: A case study with green crabs on the northwest atlantic coast. PLoS ONE, 12(9), e0185671.

    Article  Google Scholar 

  • Goodsman, D., Koch, D., Whitehouse, C., Evenden, M., Cooke, B., & Lewis, M. (2016). Aggregation and a strong Allee effect in a cooperative outbreak insect. Ecological Applications, 26, 2623–2636.

    Article  Google Scholar 

  • Goodsman, D., & Lewis, M. (2016). The minimum founding population in dispersing organisms subject to strong Allee effects. Methods in Ecology and Evolution, 7, 1100–1109.

    Article  Google Scholar 

  • Harsch, M., Phillips, A., Zhou, Y., Leung, M.-R., Rinnan, S., & Kot, M. (2017). Moving forward: Insights and applications of moving-habitat models for climate change ecology. Journal of Ecology, 105, 1169–1181.

    Article  Google Scholar 

  • Harsch, M., Zhou, Y., HilleRisLambers, J., & Kot, M. (2014). Keeping pace with climate change: Stage-structured moving-habitat models. The American Naturalist, 184(1), 25–37.

    Article  Google Scholar 

  • Heavilin, J., & Powell, J. (2008). A novel method of fitting spatio-temporal models to data, with applications to the dynamics of mountain pine beetles. Natural Resource Modeling, 21(4), 489–501.

    Article  MathSciNet  MATH  Google Scholar 

  • Hurford, A., Hebblewhite, M., & Lewis, M. (2006). A spatially explicit model for an Allee effect: Why wolves recolonize so slowly in Greater Yellowstone. Theoretical Population Biology, 70, 244–254.

    Article  MATH  Google Scholar 

  • Isern, N., Fort, J., & Pérez-Losada, J. (2008). Realistic dispersion kernels applied to cohabitation reaction-dispersion equations. Journal of Statistical Mechanics, 2008, P10012.

    Article  MATH  Google Scholar 

  • Jin, W., Smith, H., & Thieme, H. (2016). Persistence versus extinction for a class of discrete-time structured population models. Journal of Mathematical Biology, 72, 821–850.

    Article  MathSciNet  MATH  Google Scholar 

  • Kanary, L., Musgrave, J., Locke, A., Tyson, R., & Lutscher, F. (2014). Modelling the dynamics of invasion and control of competing green crab genotypes. Theoretical Ecology, 7(4), 391–404.

    Article  Google Scholar 

  • Kot, M., Lewis, M., & van den Driessche, P. (1996). Dispersal data and the spread of invading organisms. Ecology, 77, 2027–2042.

    Article  Google Scholar 

  • Kot, M., & Phillips, A. (2015). Bounds for the critical speed of climate-driven moving-habitat models. Mathematical Biosciences, 262, 65–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Latore, J., Gould, P., & Mortimer, A. (1998). Spatial dynamics and critical patch size of annual plant populations. Journal of Theoretical Biology, 190, 277–285.

    Article  Google Scholar 

  • Le, T., Lutscher, F., & Van Minh, N. (2011). Traveling wave dispersal in partially sedentary age-structured populations. Acta Mathematica Vietnamica, 2(36), 319–330.

    MathSciNet  MATH  Google Scholar 

  • Le, T., & van Nguyen, M. (2017). Monotone traveling waves in a general discrete model for populations. Discrete & Continuous Dynamical Systems - Series B, 22(8), 3221–3234.

    Article  MathSciNet  MATH  Google Scholar 

  • Leo, A. (2007). A Numerical Approach to Calculating Population Spreading Speed. Master’s Thesis, Worcester Polytechnic Institute.

    Google Scholar 

  • Lewis, M., Marculis, N., & Shen, Z. (2018). Integrodifference equations in the presence of climate change: Persistence criterion, travelling waves and inside dynamics. Journal of Mathematical Biology, 77, 1649–1687.

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis, M., Neubert, M., Caswell, H., Clark, J., & Shea, K. (2006). A guide to calculating discrete-time invasion rates from data. In M. Cadotte, S. McMahon, & T. Fukami (Eds.), Conceptual ecology and invasions biology: Reciprocal approaches to nature (pp. 169–192). Berlin: Springer.

    Chapter  Google Scholar 

  • Lewis, M., Petrovskii, S., & Potts, J. (2016). The mathematics behind biological invasions. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Li, B. (2012). Traveling wave solutions in a plant population model with a seed bank. Journal of Mathematical Biology, 65(5), 855–873.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, B., Bewick, S., Barnard, M., & Fagan, W. (2016a). Persistence and spreading speeds of integro-difference equations with an expanding or contracting habitat. Bulletin of Mathematical Biology, 78, 1337–1379.

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher, F. (2008). Density-dependent dispersal in integrodifference equations. Journal of Mathematical Biology, 56(4), 499–524.

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher, F., Nisbet, R., & Pachepsky, E. (2010). Population persistence in the face of advection. Theoretical Ecology, 3, 271–284.

    Article  Google Scholar 

  • Lutscher, F., Pachepsky, E., & Lewis, M. (2005). The effect of dispersal patterns on stream populations. SIAM Review, 47(4), 749–772.

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher, F., & Petrovskii, S. (2008). The importance of census times in discrete-time growth-dispersal models. Journal of Biological Dynamics, 2(1), 55–63.

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher, F., & Van Minh, N. (2013). Spreading speeds and traveling waves in discrete models of biological populations with sessile stages. Nonlinear Analysis: Real World Applications, 14(1), 495–506.

    Article  MathSciNet  MATH  Google Scholar 

  • Marculis, N., & Lui, R. (2015). Modelling the biological invasion of Carcinus maenas (the European green crab). Journal of Biological Dynamics, 10(1), 140–163.

    Article  MathSciNet  Google Scholar 

  • Méndez, V., Pujol, T., & Fort, J. (2002). Dispersal probability distributions and the wave-front speed problem. Physical Review E, 65, 041109.

    Article  Google Scholar 

  • Meyer, K. (2012). A spatial age-structured model of perennial plants with a seed bank. Ph.D. Thesis, University of Louisville.

    Google Scholar 

  • Meyer, K., & Li, B. (2013). A spatial model of plants with an age-structured seed bank and juvenile stage. SIAM Journal on Applied Mathematics, 73(4), 1676–1702.

    Article  MathSciNet  MATH  Google Scholar 

  • Mistro, D., Rodrigues, L., & Ferreira, W. C. Jr. (2005a). The africanized honey bee dispersal: A mathematical zoom. Bulletin of Mathematical Biology, 67, 281–312.

    Article  MathSciNet  MATH  Google Scholar 

  • Mistro, D., Rodrigues, L., & Schmid, A. (2005b). A mathematical model for dispersal of an annual plant population with a seed bank. Ecological Modelling, 188, 52–61.

    Article  Google Scholar 

  • Neubert, M., & Parker, I. (2004). Projecting rates of spread for invasive species. Risk Analysis, 24(4), 817–831.

    Article  Google Scholar 

  • Otto, G. (2017). Nonspreading solutions in integro-difference models with Allee and overcompensation effects. Ph.D. Thesis, University of Louisville.

    Google Scholar 

  • Petrovskii, S., & Morozov, A. (2009). Dispersal in a statistically structured population: Fat tails revisited. The American Naturalist, 173(2), 278–289.

    Article  Google Scholar 

  • Phillips, A., & Kot, M. (2015). Persistence in a two-dimensional moving-habitat model. Bulletin of Mathematical Biology, 77(11), 2125–2159.

    Article  MathSciNet  MATH  Google Scholar 

  • Pringle, J., Lutscher, F., & Glick, E. (2009). Going against the flow: The effect of non-Gaussian dispersal kernels and reproduction over multiple generations. Marine Ecology Progress Series, 337, 13–17.

    Article  Google Scholar 

  • Rinnan, D. S. (2017). The dispersal success and persistence of populations with asymmetric dispersal. Theoretical Ecology, 11(1), 55–69.

    Article  Google Scholar 

  • Robinet, C., Kehlenbeck, H., Kriticos, D. J., Baker, R. H. A., Battisti, A., Brunel, S., et al. (2012). A suite of models to support the quantitative assessment of spread in pest risk analysis. PLoS ONE, 7(10), e43366.

    Article  Google Scholar 

  • Rodriguez, M. (2010). A modeling framework for assessing long-distance dispersal and loss of connectivity in stream fish. American Fisheries Society Symposium, 73, 263–279.

    Google Scholar 

  • Santini, L., Cornulier, T., Bullock, J. M., Palmer, S., White, S., Hodgson, J. A., et al. (2016). A trait-based approach for predicting species responses to environmental change from sparse data: How well might terrestrial mammals track climate change? Global Change Biology, 22, 2415–2424.

    Article  Google Scholar 

  • Schofield, P. (2002). Spatially explicit models of Turelli–Hoffmann wolbachia invasive wave fronts. Journal of Theoretical Biology, 215, 121–131.

    Article  MathSciNet  Google Scholar 

  • Schreiber, S. (2003). Allee effects, extinctions, and chaotic transients in simple population models. Theoretical Population Biology, 64, 201–209.

    Article  MATH  Google Scholar 

  • Skarpaas, O., & Shea, K. (2007). Dispersal patterns, dispersal mechanisms, and invasion wave speeds for invasive thistles. The American Naturalist, 170(3), 421–430.

    Article  Google Scholar 

  • Skellam, J. G. (1951). Random dispersal in theoretical populations. Biometrika, 38, 196–218.

    Article  MathSciNet  MATH  Google Scholar 

  • Stover, J. P., Kendall, B. E., & Nisbet, R. M. (2014). Consequences of dispersal heterogeneity for population spread and persistence. Bulletin of Mathematical Biology, 76, 2681–2710.

    Article  MathSciNet  MATH  Google Scholar 

  • Sullivan, L., Li, B., Miller, T., Neubert, M., & Shaw, A. (2017). Density dependence in demography and dispersal generates fluctuating invasion speeds. Proceedings of the National Academy of Sciences, 114(19), 5053–5058.

    Article  Google Scholar 

  • Van Kirk, R. (1995). Integrodifference models for biological growth and dispersal. Ph.D. Thesis, University of Utah.

    Google Scholar 

  • Vasilyeva, O., Lutscher, F., & Lewis, M. (2016). Analysis of spread and persistence for stream insects with winged adult stages. Journal of Mathematical Biology, 72(4), 851–875.

    Article  MathSciNet  MATH  Google Scholar 

  • Veit, R. R., & Lewis, M. A. (1996). Dispersal, population growth, and the Allee effect: Dynamics of the house finch invasion in eastern North America. The American Naturalist, 148(2), 255–274.

    Article  Google Scholar 

  • Volkov, D., & Lui, R. (2007). Spreading speed and traveling wave solutions of a partially sedentary population. IMA Journal of Applied Mathematics, 72(6), 801–816.

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger, H. (1982). Long-time behavior of a class of biological models. SIAM Journal on Mathematical Analysis, 13, 353–396.

    Article  MathSciNet  MATH  Google Scholar 

  • Yamamura, K. (2002). Dispersal distance of heterogeneous populations. Population Ecology, 44, 93–101.

    Article  Google Scholar 

  • Zhou, Y., & Kot, M. (2011). Discrete-time growth-dispersal models with shifting species ranges. Theoretical Ecology, 4, 13–25.

    Article  Google Scholar 

  • Zhou, Y., & Kot, M. (2013). Life on the move: Modeling the effects of climate-driven range shifts with integrodifference equations. In Dispersal, individual movement and spatial ecology (pp. 263–292). Berlin: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lutscher, F. (2019). Applications. In: Integrodifference Equations in Spatial Ecology. Interdisciplinary Applied Mathematics, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-030-29294-2_12

Download citation

Publish with us

Policies and ethics