Skip to main content

Introduction to Dynamic Transitions

  • Chapter
  • First Online:
Phase Transition Dynamics
  • 1133 Accesses

Abstract

The study of phase transitions is an active field with a long history. This book aims to provide a comprehensive, unified, and balanced account of both dynamic and topological phase transition theories and their applications to statistical systems, quantum systems, classical and geophysical fluid dynamics, biological and chemical systems, and climate dynamics. The dynamic phase transition theory establishes a dynamic transition principle, Principle 1, following the philosophy of searching for a complete set of transition states. We present in this chapter a brief introduction to this dynamic transition theory together with an introduction to first-principle approach to fundamental laws of physics, and to fundamental issues of dynamic phase transitions motivated by problems in the nonlinear sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For brevity, we use here \(\lambda \in \mathbb R\).

  2. 2.

    See the beginning of Chap. 2 for the precise definition, and Ma and Wang (2005b) for more detailed discussions.

References

  • Cahn, J. and J. E. Hillard (1957). Free energy of a nonuniform system i. interfacial energy. J. Chemical Physics 28, 258–267.

    Google Scholar 

  • Chandrasekhar, S. (1981). Hydrodynamic and Hydromagnetic Stability. Dover Publications, Inc.

    MATH  Google Scholar 

  • Drazin, P. and W. Reid (1981). Hydrodynamic Stability. Cambridge University Press.

    MATH  Google Scholar 

  • Eckhardt, B., T. M. Schneider, B. Hof, and J. Westerweel (2007). Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447–468.

    Article  MathSciNet  Google Scholar 

  • Fisher, M. (1964). Specific heat of a gas near the critical point. Physical Review 136:6A, A1599–A1604.

    Article  Google Scholar 

  • Ghil, M., T. Ma, and S. Wang (2001). Structural bifurcation of 2-D incompressible flows. Indiana Univ. Math. J. 50(Special Issue), 159–180. Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000).

    Google Scholar 

  • Ghil, M., T. Ma, and S. Wang (2005). Structural bifurcation of 2-D nondivergent flows with Dirichlet boundary conditions: applications to boundary-layer separation. SIAM J. Appl. Math. 65(5), 1576–1596 (electronic).

    Article  MathSciNet  Google Scholar 

  • Glansdorff, P. and I. Prigogine (1971). Structure, stability, and fluctuations. Wiley-Interscience, New York.

    MATH  Google Scholar 

  • Kleman, M. and O. D. Laverntovich (2007). Soft matter physics: an introduction. Springer Science & Business Media.

    Google Scholar 

  • Landau, L. D. and E. M. Lifshitz (1975). Course of theoretical physics, Vol. 2 (Fourth ed.). Oxford: Pergamon Press. The classical theory of fields, Translated from the Russian by Morton Hamermesh.

    Google Scholar 

  • Ma, T. and S. Wang (2001). Structure of 2D incompressible flows with the Dirichlet boundary conditions. Discrete Contin. Dyn. Syst. Ser. B 1(1), 29–41.

    MathSciNet  MATH  Google Scholar 

  • Ma, T. and S. Wang (2004b). Dynamic bifurcation and stability in the Rayleigh-Bénard convection. Commun. Math. Sci. 2(2), 159–183.

    Article  MathSciNet  Google Scholar 

  • Ma, T. and S. Wang (2005b). Bifurcation theory and applications, Volume 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.

    Google Scholar 

  • Ma, T. and S. Wang (2005d). Geometric theory of incompressible flows with applications to fluid dynamics, Volume 119 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.

    Book  Google Scholar 

  • Ma, T. and S. Wang (2007a). Rayleigh-Bénard convection: dynamics and structure in the physical space. Commun. Math. Sci. 5(3), 553–574.

    Article  MathSciNet  Google Scholar 

  • Ma, T. and S. Wang (2007b). Stability and Bifurcation of Nonlinear Evolutions Equations. Science Press, Beijing.

    Google Scholar 

  • Ma, T. and S. Wang (2008a). Dynamic model and phase transitions for liquid helium. Journal of Mathematical Physics 49:073304, 1–18.

    MathSciNet  MATH  Google Scholar 

  • Ma, T. and S. Wang (2008b). Dynamic phase transition theory in PVT systems. Indiana University Mathematics Journal 57:6, 2861–2889.

    Article  MathSciNet  Google Scholar 

  • Ma, T. and S. Wang (2009a). Boundary-layer and interior separations in the Taylor-Couette-Poiseuille flow. J. Math. Phys. 50(3), 033101, 29.

    Article  MathSciNet  Google Scholar 

  • Ma, T. and S. Wang (2009b). Cahn-Hilliard equations and phase transition dynamics for binary systems. Dist. Cont. Dyn. Systs., Ser. B 11:3, 741–784.

    Google Scholar 

  • Ma, T. and S. Wang (2009c). Phase separation of binary systems. Physica A: Statistical Physics and its Applications 388:23, 4811–4817.

    Article  Google Scholar 

  • Ma, T. and S. Wang (2011e). Third-order gas-liquid phase transition and the nature of Andrews critical point. AIP Advances 1, 042101.

    Article  Google Scholar 

  • Ma, T. and S. Wang (2015a). Mathematical Principles of Theoretical Physics. Science Press, 524 pages.

    Google Scholar 

  • Ma, T. and S. Wang (2017a). Dynamic law of physical motion and potential-descending principle. J. Math. Study 50:3, 215–241; see also HAL preprint: hal--01558752.

    Google Scholar 

  • Nicolis, G. and I. Prigogine (1977). Self-organization in nonequilibrium systems. Wiley-Interscience, New York.

    MATH  Google Scholar 

  • Nishikawa, K. and T. Morita (1998). Fluid behavior at supercritical states studied by small-angle X-ray scattering. Journal of Supercritical Fluid 13, 143–148.

    Article  Google Scholar 

  • Novick-Cohen, A. and L. A. Segel (1984). Nonlinear aspects of the Cahn-Hilliard equation. Phys. D 10(3), 277–298.

    Article  MathSciNet  Google Scholar 

  • Onuki, O. (2002). Phase transition dynamics. Cambridge Univ. Press..

    Book  Google Scholar 

  • Philander, S. G. and A. Fedorov (2003). Is el niño sporadic or cyclic? Annu. Rev. Earth Planet. Sci. 31, 579–594.

    Article  Google Scholar 

  • Pismen, L. M. (2006). Patterns and Interfaces in Dissipative Dynamics. Springer, Berlin.

    MATH  Google Scholar 

  • Prandtl, L. (1904). In Verhandlungen des dritten internationalen Mathematiker-Kongresses. Heidelberg, Leipeizig, pp. 484–491.

    Google Scholar 

  • Prigogine, I. and R. Lefever (1968). Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695.

    Article  Google Scholar 

  • Raguin, L. G. and J. G. Georgiadis (2004). Kinematics of the stationary helical vortex mode in Taylor-Couette-Poiseuille flow. J. Fluid Mech. 516, 125–154.

    Article  MathSciNet  Google Scholar 

  • Rayleigh, L. (1916). On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Phil. Mag. 32(6), 529–46.

    Article  Google Scholar 

  • Reichl, L. E. (1998). A modern course in statistical physics (Second ed.). A Wiley-Interscience Publication. New York: John Wiley & Sons Inc.

    MATH  Google Scholar 

  • Stanley, H. E. (1971). Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, New York and Oxford.

    Google Scholar 

  • Yang, C. N. and R. Mills (1954). Conservation of isotopic spin and isotopic gauge invariance. Physical Review 96, 191–195.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, T., Wang, S. (2019). Introduction to Dynamic Transitions. In: Phase Transition Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-29260-7_1

Download citation

Publish with us

Policies and ethics