Skip to main content

FLEA-CBR – A Flexible Alternative to the Classic 4R Cycle of Case-Based Reasoning

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11680))

Included in the following conference series:

Abstract

This paper introduces FLEA-CBR, an alternative approach for composition of case-based reasoning (CBR) processes. FLEA-CBR extends the original 4R (Retrieve, Reuse, Revise, Retain) CBR cycle with a flexible order of execution of its main steps. Additionally, a number of combinatorial features for a more comprehensive and enhanced composition can be used. FLEA is an acronym for Find, Learn, Explain, Adapt and was initially created to solve the restrictiveness issues of case-based design (CBD) where many existing approaches consist of the retrieval phase only. However, the methodology can be transferred to other CBR domains too, as its flexibility allows for convenient adaptation to the given requirements and constraints. The main advantages of FLEA-CBR over the classic 4R cycle are the ability to combine and activate the main steps in desired or arbitrary order and the use of the explainability feature together with each of the steps as well as a standalone component, providing a deep integration of Explainable AI (XAI) into the CBR cycle. Besides the CBR methods, the methodology was also conceptualized to make use of the currently popular machine learning methods, such as recurrent and convolutional neural networks (RNN, ConvNet) or general adversarial nets (GAN), for all of its steps. It is also compatible with different case representations, such as graph- or attribute-based. Being a template for a distributed software architecture, FLEA-CBR relies on the autonomy of implemented components, making the methodology more stable and suitable for use in modern container-based environments. Along with the detailed description of the methodology, this paper also provides two examples of its usage: for the domain of CBR-based creativity and library service optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aamodt, A.: Explanation-driven case-based reasoning. In: Wess, S., Althoff, K.-D., Richter, M.M. (eds.) EWCBR 1993. LNCS, vol. 837, pp. 274–288. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58330-0_93

    Chapter  Google Scholar 

  2. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994)

    Google Scholar 

  3. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  4. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991)

    Google Scholar 

  5. Aha, D., Darrell, T., Pazzani, M., Reid, D., Sammut, C., Stone, P.: IJCAI-17 workshop on explainable AI (XAI). In: IJCAI-17 Workshop on Explainable AI (XAI) (2017)

    Google Scholar 

  6. Amin, K., Kapetanakis, S., Althoff, K.-D., Dengel, A., Petridis, M.: Answering with cases: a CBR approach to deep learning. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 15–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01081-2_2

    Chapter  Google Scholar 

  7. Ayzenshtadt, V., Langenhan, C., Bukhari, S.S., Althoff, K.D., Petzold, F., Dengel, A.: Thinking with containers: a multi-agent retrieval approach for the case-based semantic search of architectural designs. In: Filipe, J., van den Herik, J. (eds.) 8th International Conference on Agents and Artificial Intelligence (ICAART-2016), Rome, Italy, 24–26 February. SCITEPRESS (2016)

    Google Scholar 

  8. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  9. Chollet, F., et al.: Keras: Deep learning library for theano and TensorFlow (2015). https://keras.io

  10. Cordier, A., et al.: Taaable: a case-based system for personalized cooking. In: Montani, S., Jain, L. (eds.) Successful Case-Based Reasoning Applications-2, pp. 121–162. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-38736-4_7

    Chapter  Google Scholar 

  11. De Paz, J.F., Bajo, J., González, A., Rodríguez, S., Corchado, J.M.: Combining case-based reasoning systems and support vector regression to evaluate the atmosphere-ocean interaction. Knowl. Inf. Syst. 30(1), 155–177 (2012)

    Article  Google Scholar 

  12. Eremeev, A.P., Vagin, V.N.: Common sense reasoning in diagnostic systems. In: Efficient Decision Support Systems-Practice and Challenges From Current to Future. IntechOpen (2011)

    Google Scholar 

  13. Espinoza-Stapelfeld, C., Eisenstadt, V., Althoff, K.-D.: Comparative quantitative evaluation of distributed methods for explanation generation and validation of floor plan recommendations. In: van den Herik, J., Rocha, A.P. (eds.) ICAART 2018. LNCS (LNAI), vol. 11352, pp. 46–63. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05453-3_3

    Chapter  Google Scholar 

  14. Finnie, G., Sun, Z.: R5 model for case-based reasoning. Knowl.-Based Syst. 16(1), 59–65 (2003)

    Article  Google Scholar 

  15. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  16. Grace, K., Maher, M.L., Wilson, D.C., Najjar, N.A.: Combining CBR and deep learning to generate surprising recipe designs. In: Goel, A., Díaz-Agudo, M.B., Roth-Berghofer, T. (eds.) ICCBR 2016. LNCS (LNAI), vol. 9969, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47096-2_11

    Chapter  Google Scholar 

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  18. Hohimer, R., Greitzer, F.L., Noonan, C.F., Strasburg, J.D.: Champion: intelligent hierarchical reasoning agents for enhanced decision support. In: STIDS, pp. 36–43 (2011)

    Google Scholar 

  19. Holt, A., Bichindaritz, I., Schmidt, R., Perner, P.: Medical applications in case-based reasoning. Knowl. Eng. Rev. 20(3), 289–292 (2005)

    Article  Google Scholar 

  20. Hunt, J.: Evolutionary case based design. In: Watson, I.D. (ed.) UK CBR 1995. LNCS, vol. 1020, pp. 17–31. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60654-8_19

    Chapter  Google Scholar 

  21. Kim, S., Shim, J.H.: Combining case-based reasoning with genetic algorithm optimization for preliminary cost estimation in construction industry. Can. J. Civ. Eng. 41(1), 65–73 (2013)

    Article  Google Scholar 

  22. Leake, D.B.: Case-Based Reasoning: Experiences, Lessons and Future Directions. MIT Press, Cambridge (1996)

    Google Scholar 

  23. Lees, B., Corchado, J.: Neural network support in a hybrid case-based forecasting system. In: Case-Based Reasoning Integrations, pp. 85–90 (1998)

    Google Scholar 

  24. Molnar, C.: Interpretable Machine Learning (2019). https://christophm.github.io/interpretable-ml-book/

  25. Navarro, M., De Paz, J.F., Julián, V., Rodríguez, S., Bajo, J., Corchado, J.M.: Temporal bounded reasoning in a dynamic case based planning agent for industrial environments. Expert Syst. Appl. 39(9), 7887–7894 (2012)

    Article  Google Scholar 

  26. Ociepka, P., Herbuś, K.: Application of the CBR method for adding the process of cutting tools and parameters selection. In: IOP Conference Series: Materials Science and Engineering, vol. 145, p. 022029. IOP Publishing (2016)

    Google Scholar 

  27. Pereira-Fariña, M., Reed, C.: Proceedings of the 1st workshop on explainable computational intelligence (XCI 2017). In: Proceedings of the 1st Workshop on Explainable Computational Intelligence (XCI 2017) (2017)

    Google Scholar 

  28. Prentzas, J., Hatzilygeroudis, I.: Combinations of case-based reasoning with other intelligent methods. Int. J. Hybrid Intell. Syst. 6(4), 189–209 (2009)

    Article  Google Scholar 

  29. Reinartz, T., Iglezakis, I., Roth-Berghofer, T.: Review and restore for case-base maintenance. Comput. Intell. 17(2), 214–234 (2001)

    Article  Google Scholar 

  30. Richards, P., Ekárt, A.: Supporting knitwear design using case-based reasoning. In: Proceedings of the 19th CIRP Design Conference-Competitive Design. Cranfield University Press (2009)

    Google Scholar 

  31. Richter, K.: Augmenting Designers’ Memory: Case-based Reasoning in Architecture. Logos-Verlag, Berlin (2011)

    Google Scholar 

  32. Richter, M.M.: Knowledge containers. In: Readings in Case-Based Reasoning. Morgan Kaufmann Publishers, San Francisco (2003)

    Google Scholar 

  33. Roth-Berghofer, T.R.: Explanations and case-based reasoning: foundational issues. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 389–403. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28631-8_29

    Chapter  Google Scholar 

  34. Roth-Berghofer, T.R., Bahls, D.: Code tagging and similarity-based retrieval with myCBR. In: Bramer, M., Petridis, M., Coenen, F. (eds.) International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 19–32. Springer, London (2008). https://doi.org/10.1007/978-1-84882-171-2_2

    Chapter  Google Scholar 

  35. Sabri, Q.U., Bayer, J., Ayzenshtadt, V., Bukhari, S.S., Althoff, K.D., Dengel, A.: Semantic pattern-based retrieval of architectural floor plans with case-based and graph-based searching techniques and their evaluation and visualization. In: 6th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2017), Porto, Portugal, 24–26 February 2017 (2017)

    Google Scholar 

  36. Skjold, K., Øynes, M.S.: Case-based reasoning and computational creativity in a recipe recommender system. Master’s thesis, NTNU (2017)

    Google Scholar 

  37. Wilke, W., Bergmann, R.: Techniques and knowledge used for adaptation during case-based problem solving. In: Pasqual del Pobil, A., Mira, J., Ali, M. (eds.) IEA/AIE 1998. LNCS, vol. 1416, pp. 497–506. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-64574-8_435

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Eisenstadt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eisenstadt, V., Langenhan, C., Althoff, KD. (2019). FLEA-CBR – A Flexible Alternative to the Classic 4R Cycle of Case-Based Reasoning. In: Bach, K., Marling, C. (eds) Case-Based Reasoning Research and Development. ICCBR 2019. Lecture Notes in Computer Science(), vol 11680. Springer, Cham. https://doi.org/10.1007/978-3-030-29249-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29249-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29248-5

  • Online ISBN: 978-3-030-29249-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics