Skip to main content
  • 1220 Accesses

Abstract

The chapter discusses tissue culture (micropropagation), direct regeneration from the aerial stem, anther culture, inflorescence culture and in vivo development of fruit, microrhizomes, plant regeneration from callus culture, suspension culture, protoplast culture, in vitro selection/induction of systemic resistance, soma clonal variation, production of secondary metabolites, in vitro polyploidy, and field evaluation of tissue-cultured plants. The chapter will additionally talk about germplasm conservation, in which in vitro conservation and cryopreservation are discussed. Also, the place of synthetic seeds in ginger production is discussed in the chapter. Further, molecular markers and diversity studies including molecular phylogeny of ginger are also discussed. Additionally, the application of molecular markers for detection of adulteration in traded ginger, in genetic fidelity testing, is discussed. Tagging genes of interest using molecular markers, isolating candidate genes for other agronomically important traits, and genetic transformation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adaniya, S. (2001). Optimal pollination environment of tetraploid ginger (Zingiber officinale Roscoe) evaluated by in vitro pollen germination and pollen tube growth in styles. Scientia Horticulturae, 90, 219–226.

    Google Scholar 

  • Adaniya, S., & Shirai, D. (2001). In vitro induction of tetraploid ginger (Zingiber officinale Roscoe) and its pollen fertility and germinability. Journal of Horticulture, 88, 277–287.

    Google Scholar 

  • Ahmad, D., Kikuchi, A., Jatoi, S. A., Mimura, M., & Watanabe, K. N. (2009). Genetic variation of chloroplast DNA in Zingiberaceae taxa from Myanmar assessed by PCR-restriction fragment length polymorphism analysis. The Annals of Applied Biology, 155, 91–101.

    Article  CAS  Google Scholar 

  • Ahn, J. H., Lee, J. J., Kim, T. S., Kim, H. S., & Lee, S. Y. (2007). Effects of growth regulators and sucrose concentrations on proliferation of in vitro shoot using bioreactor culture in Zingiber officinale. Horticulture, Environment and Biotechnology, 48, 354–358.

    CAS  Google Scholar 

  • Ajithkumar, P., & Seeni, S. (1995). Isolation of somaclonal variants though rhizome explants cultures of Kaempferia galanga L. In Proceedings of all India symposium on recent advances in biotechnological applications of plant tissue cell culture (RABAPTCCAS) (p. 43). Mysore: CFTRI.

    Google Scholar 

  • Arimura, C. T., Finger, F. L., & Casali, V. W. D. (2000a). A fast method for in vitro propagation of ginger. Tropical Science, 40, 86–91.

    Google Scholar 

  • Arimura, C. T., Finger, F. L., & Casali, V. W. D. (2000b). Effect of NAA and BAP on ginger (Zingiber officinale Roscoe) sprouting in solid and liquid medium. Revista Brasileira de Plantas Medicinais, 2, 23–26.

    CAS  Google Scholar 

  • Assiss, A. M., de Faria, R. T., Unemoto, L. K., de Colombo, L. A., & Lone, A. B. (2009). Ginger flower (Etlingera elatior) acclimation in coconut-based substrates. Acta Science, 31, 43–47.

    Google Scholar 

  • Aswati Nair, R., & Thomas, G. (2006). Isolation, characterization and expression studies of resistance gene candidates (RGCs) from Zingiber spp. Theoretical and Applied Genetics, 116, 123–134.

    Article  CAS  Google Scholar 

  • Aswati Nair, R., Kiran, A. G., Sivakumar, K. C., & Thomas, G. (2010). Molecular characterization of an oomycete-responsive PR-5 protein gene from Zingiber zerumbet. Plant Molecular Biology Reporter, 28, 128–135.

    Article  CAS  Google Scholar 

  • Babu, K.N. (1997). In vitro studies in Zingiber officinale Rosc. Ph.D. Thesis, Calicut University, Calicut, Kerala State.

    Google Scholar 

  • Babu, K. N., Samsudeen, K., & Ratnambal, M. (1992). In vitro plant regeneration from leaf derived callus in ginger, Zingiber officinale Rosc. Plant Cell Tissue Organ Culture, 29, 71–74.

    Article  CAS  Google Scholar 

  • Babu, K. N., Sasikumar, B., Ratnambal, M. J., George, K. J., & Ravindran, P. N. (1993). Genetic variability in turmeric (Curcuma longa L.). Indian Journal of Genet Plant Breed, 53, 91–93.

    Google Scholar 

  • Babu, K. N., Ravindran, P. N., & Peter, K. V. (1997). Protocols for micropropagation in spices and aromatic crops (p. 35). Calicut: Indian Institute of Spices Research.

    Google Scholar 

  • Babu, K. N., Minoo, D., Geetha, S. P., Samsudeen, K., Rema, J., Ravindran, P. N., et al. (1998). Plant biotechnology–its role in improvement of spices. Indian Journal of Agricultural Sciences, 68, 533–547.

    Google Scholar 

  • Babu, K. N., Geetha, S. P., Minoo, D., Ravindran, P. N., & Peter, K. V. (1999). In vitro conservation of cardamom (Elettaria cardamomum) germplasm. Plant Genetic Resources Newsletter, 119, 41–45.

    Google Scholar 

  • Babu, K. N., Ravindran, P. N., & Sasikumar, B. (2003). Field evaluation of tissue cultured plants of spices and assessment of their genetic stability using molecular markers. Final Report Submitted to Department of Biotechnology, Government of India, p. 94.

    Google Scholar 

  • Balachandran, S. M., Bhat, S. R., & Cahndel, K. P. S. (1990). In vitro multiplication of turmeric (Curcuma sp.) and ginger (Zingiber officinale Rosc.). Plant Cell Reports, 8, 521–524.

    Article  CAS  PubMed  Google Scholar 

  • Behera, K. K., & Sahoo, S. (2009). An efficient method of micropropagation of ginger (Zingiber officinale Rosc. cv. Suprava and Suruchi) in vitro response of different explants’ types on shoot and root development of ginger. Indian Journal of Plant Physiology, 14, 162–168.

    CAS  Google Scholar 

  • Bhagyalakshmi, N. S., & Singh, N. S. (1994). The yield and quality of ginger produced by micro- propagated plants as compared with conventionally propagated plants. Journal of Horticulture Science, 69, 321–327.

    Google Scholar 

  • Bua-in, S., & Paisooksantivatana, Y. (2010). Study of clonally propagated cassumunar ginger (Zingiber montanum (Koenig) Link ex Dietr.) and its relation to wild Zingiber species from Thailand revealed by RAPD markers. Genetic Research and Crop Evolution, 57, 405–414.

    Article  CAS  Google Scholar 

  • Chan, L. K., & Thong, W. H. (2004). In vitro propagation of Zingiberaceae species with medicinal properties. Journal of Plant Biotechnology, 6, 181–188.

    Google Scholar 

  • Charlwood, K. A., Brown, S., & Charlwood, B. V. (1988). The accumulation of flavor compounds by cultivars of Zingiber officinale. In R. J. Robins & M. J. C. Rhoades (Eds.), Manipulating secondary metabolites in culture (pp. 195–200). Norwich: AFRC Institute of Food Research.

    Google Scholar 

  • Chase, M. W. (2004). Monocot relationships: An overview. American Journal of Botany, 91, 1645–1655.

    Article  CAS  PubMed  Google Scholar 

  • Cha-um, S., Tuan, N. M., & Phimmakong Kirdmanee, C. (2005). The ex vitro survival and growth of ginger (Zingiber officinale Rosc.) influence by in vitro acclimatization under high relative humidity and CO2 enrichment conditions. Asian Journal of Plant Science, 4, 109–116.

    Article  Google Scholar 

  • Chen, Z. H., Kai, G. Y., Liu, X. J., Lin, J., Sun, X. F., & Tang, K. X. (2005). cDNA cloning and characterization of a mannose-binding lectin from Zingiber officinale Roscoe (ginger) rhizomes. Journal of Biosciences, 30, 213–220.

    Article  CAS  PubMed  Google Scholar 

  • Chirangini, P., & Sharma, G. H. (2005). In vitro propagation and microrhizome induction in Zingiber cassumunar (Roxb.)—An antioxidant-rich medicinal plant. Journal of Food Agriculture Environment, 3, 139–142.

    Google Scholar 

  • Cho, S. K., Roh, K. H., Hyun, D. Y., Choi, I. L., Kim, K. Y., Kim, S. D., et al. (1997). Mass production of rhizome induced by tissue culture on ginger 2. Selection of the optimal nutrient solution and media in hydroponics. RDA Journal of Indian Crop Science, 39, 16–21.

    Google Scholar 

  • Christensen, A. H., & Quail, P. H. (1996). Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research, 5, 213–218.

    Article  CAS  PubMed  Google Scholar 

  • Dake, G. N., Babu, K. N., Rao, T. G. N., Leela, N. K. (1997, November 10–15). In vitro selection for resistance to soft rot and bacterial wilt in ginger. International conference on integrated plant disease Management for Sustainable Agriculture. Indian Phytopathological Society, New Delhi, pp. 339.

    Google Scholar 

  • Debergh, P. C., & Read, P. E. (1991). Micropropagation. In P. C. Debergh & R. H. Zimmerman (Eds.), Micropropagation: Technology and application. Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Dekkers, A. J., Rao, A., & Goh, C. J. (1991). In vitro storage of multiple shoot cultures on gingers at ambient temperature of 24–29°C. Scientia Horticulturae, 47, 157–167.

    Article  Google Scholar 

  • Devi, S., Taylor, M. B., Powaseu, I., & Thorpe, P. (1999). Micropropagation of ginger PRAP report-pacific regional. Agriculture Programs, 7, 11–12.

    Google Scholar 

  • Dogra, S. P., Korla, B. N., & Sharma, P. P. (1994). In vitro clonal propagation of ginger (Zingiber officinale Rosc.). Horticultural Journal, 7, 45–50.

    Google Scholar 

  • Fugisawa, M., Harada, H., Kenmoku, H., Mizutani, S., & Misawa, N. (2010). Cloning and characterization of a novel gene that encodes (S)-beta-bisabolene synthase from ginger, Zingiber officinale. Planta, 232, 121–130.

    Article  CAS  Google Scholar 

  • Gao, D. M., Liu, Z. W., & Fan, S. J. (2006). RAPD analysis of genetic diversity among Zingiber officinale cultivars. Journal of Agricultural Biotechnology, 14, 245–249.

    CAS  Google Scholar 

  • Gao, L., Liu, N., Huang, B., & Hu, X. (2008). Phylogenetic analysis and genetic mapping of Chinese Hedychium using SRAP markers. Science Horticulture, 117, 369–377.

    Article  CAS  Google Scholar 

  • Geetha, S.P. (2002). In Vitro technology for genetic conservation of some genera of Zingiberaceae. Ph.D. Thesis, Calicut University, Calicut, Kerala State.

    Google Scholar 

  • Giradi, C. G., & Pescador, R. (2010). Aclimatacao de gengibre (Zingiber officinale Roscoe) e a relacao com carboidratos endogenos. The Revista Brasileira de Plantas Medicinais, 12, 62–72.

    Article  Google Scholar 

  • Gosh, R., & Purkayastha, R. P. (2003). Molecular diagnosis and induced systemic protection against rhizome rot disease of ginger caused by Pythium aphanidermatum. Journal of Phytopathology, 85, 1782–1787.

    Google Scholar 

  • Guan, Q. Z., Guo, Y. H., Sui, X. L., Li, W., & Zhang, Z. X. (2008). Changes in photosynthetic capacity and antioxidant enzymatic systems in micropropagated Zingiber officinale plant- lets during their acclimation. Photosynthetica, 46, 193–201.

    Article  CAS  Google Scholar 

  • Guo, Y., & Zhang, Z. (2005). Establishment and plant regeneration of somatic embryogenic cell suspension cultures of the Zingiber officinale. Rosc Journal of Science Horticulture, 107, 90–96.

    Article  CAS  Google Scholar 

  • Guo, Y., Bai, J., & Zhang, Z. (2007). Plant regeneration from embrogenic suspension-derived protoplasts of ginger (Zingiber officinale Rosc.). Plant Cell, Tissue and Organ Culture, 89, 151–157.

    Article  Google Scholar 

  • Gurel, S., Ekrem, G., & Zeki, K. (2002). Establishment of cell suspension cultures and plant regeneration in sugar beet (Beta vulgaris L.). Turkish Journal of Botany, 26, 197–205.

    Google Scholar 

  • Haberlandt, G. (1902). Experiments on the culture of isolated plant cells. The Botanical Review, 35, 68–85.

    Article  Google Scholar 

  • He, C. K., Li, J. S., Guo, S. Z., Zheng, M., & Chen, W. S. (1995). The relationship between geographic distribution and the genetic difference of peroxidase isozyme of ginger germ- plasm. Fujian Acta Horticulture, 402, 125–132.

    Google Scholar 

  • Hernandez-Soto, A., Gatica-Arias, A., & Alvarenga-Venutolo, S. (2008). Low cost glass fermentor design for mass micropropagation of ginger. Agronomía Mesoamericana, 19, 87–92.

    Article  Google Scholar 

  • Him de Freitez, Y. Y., & Paez de Casares, J. (2004). Anatomia foliar comparada de plantas de Jengibre (Zingiber officinale Roscoe) cultivadas en tres ambientes de crecimiento. Bioagro, 16, 27–30.

    Google Scholar 

  • Huang, J. L., Cheng, L. L., & Zhang, Z. X. (2007). Molecular cloning and characterization of violaxanthin depoxidase (VDE) in Zingiber officinale. Plant Science, 172, 228–235.

    Article  CAS  Google Scholar 

  • Hyun, D. Y., Cho, S. K., Roh, K. H., Kim, K. Y., Choi, I. L., Kim, S. D., Park, M. S., & Choi, K. G. (1997). Mass production of rhizome induced by tissue culture on ginger 1. Environmental factor related to the increasing rhizome RDA. Journal of Indian Crop Science, 39, 10–15.

    Google Scholar 

  • Ilahi, I., & Jabeen, M. (1987). Micropropagation of Z. officinale Rosc. Pakistan Journal of Botany, 19, 61–65.

    Google Scholar 

  • Ilahi, I., & Jabeen, M. (1992). Tissue culture studies for micropropagation and extraction of essential oils from Zingiber officinale. Rosc. Pakistan Journal of Botany, 24(1), 54–59.

    CAS  Google Scholar 

  • Ipsita, R., Nuruzzaman, M., Habiba, S. U., & Uddin, A. F. M. J. (2010). Evaluation of micropropagated ginger plantlets in different soil composition of pot culture. International Journal of Sustainable Agricultural Technology, 18–21.

    Google Scholar 

  • Ishida, M., & Adachi, T. (1997). Plant regeneration from two callus types of ginger (Zingiber officinale Rosc.). SABRAO Journal, 29, 53–60.

    Google Scholar 

  • Jaleel, K., & Sasikumar, B. (2010). Genetic diversity analysis of ginger (Zingiber officinale Rosc.) germplasm based on RAPD and ISSR markers. Scientia Horticulturae, 125, 73–76.

    Article  CAS  Google Scholar 

  • Jamil, M., Kim, J. K., Akram, Z., Ajmal, S. U., & Rha, S. S. (2007). Regeneration of ginger plant from callus culture through organogenesis and effect of CO2 enrichment on the differentiation of regenerated plant. Biotechnology, 6, 101–104.

    Article  CAS  Google Scholar 

  • Jasarai, Y. T., Patel, K. G., & George, M. M. (2000, September 20–23). Micropropagation of Zingiber officinale Rosc. and Curcuma amada Roxb. In: Ramana, K. V. (Ed.), Spices and aromatic plants: Challenges and opportunities in the New Century India Indian Society for Spices, (pp. 52–54). Centennial Conference on Spices and Aromatic Plants, Calicut.

    Google Scholar 

  • Jatoi, S. A., Akira, K., San, S. Y., Khaw, W. N., Shinsuke, Y., Watanabe, J. A., et al. (2006). Use of RICE SSR markers as RAPD markers for genetic diversity analysis in Zingiberaceae. Breeding Science, 56, 107–111.

    Article  CAS  Google Scholar 

  • Jiang, H., Xie, Z., Koo, H. J., McLaughlin, S. P., Timmermann, B. N., & Gang, D. R. (2006). Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: Tools for authentication of ginger (Zingiber officinale Rosc.). Phytochemistry, 67, 1673–1685.

    Article  CAS  PubMed  Google Scholar 

  • Kackar, A., Bhat, S. R., Chandel, K. P. S., & Malik, S. K. (1993). Plant regeneration via somatic embryogenesis in ginger. Plant Cell Tissue Organ Culture, 32, 289–292.

    Article  CAS  Google Scholar 

  • Kambaska, K. B., & Santilata, S. (2009). Effect of plant growth regulator on micropropagation of ginger (Zingiber officinale Rosc.) cv. Suprava and Suruchi. Journal of Agriculture Technology, 5, 271–280.

    Google Scholar 

  • Kavitha, P. G., & Thomas, G. (2006). Zingiber zerumbet, A potential Donor for Soft Rot Resistance in Ginger: Genetic Structure and Functional Genomics. Extended Abstract XVIII, Kerala Science Congress, pp. 169–171.

    Google Scholar 

  • Kavitha, P. G., & Thomas, G. (2008). Defence transcriptome profiling of Zingiber zerumbet (L) Smith by mRNA differential display. Journal of Biosciences, 33, 81–90.

    Article  CAS  PubMed  Google Scholar 

  • Kavitha, P. G., Pratibha, N., Aswati Nair, R., Jayachandran, B. K., Sabu, M., & Thomas, G. (2007). AFLP polymorphism and Pythium response in Zingiber species. In K. Raghunath (Ed.), Recent Trends in horticultural biotechnology (pp. 497–503). New Delhi: New India Publishing Agency.

    Google Scholar 

  • Kavitha, P. G., Kiran, A. G., Dinesh Raj, R., Sahu, M., & Thomas, G. (2010). Amplified fragment length polymorphism analyses unravel a striking difference in the intraspecific genetic diversity of four species of genus Zingiber Boehm. From the Western Ghats. South India Current Science, 98, 242–247.

    Google Scholar 

  • Kavyashree, R. (2009). An efficient in vitro protocol for clonal multiplication of ginger var Varada. Indian Journal of Biotechnology, 8, 328–331.

    Google Scholar 

  • Kim, T., Choi, I., Kim, H., Kim, S., Park, M., & Ko, J. (2000). Investigation of floral structure and plant regeneration through anther culture in ginger. Korean Journal of Crop Science, 45, 207–210.

    Google Scholar 

  • Kirdmanee, C., Mosaleeyanon, K., Tanticharoen, M., Craker, L. E., Simon, J. E., Jatisatienr, A., et al. (2004). A novel approach of bacteria-free rhizome production of ginger through bio- technology. Acta Horticulturae, 629, 457–461.

    Article  Google Scholar 

  • Kress, W. J., Prince, L. M., & Williams, K. J. (2002). The phylogeny and a new classification of the gingers (Zingiberaceae): Evidence from molecular data. American Journal of Botany, 89, 1682–1696.

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni, D. D., Khupse, S. S., Mascarenhas, A. F. (1987). Isolation of Pythium tolerant ginger by tis- sue culture. In: Potty, S. N. (Ed.), Proceedings of VI symposium on plantation crops, Calicut, Kerala State, India, pp. 3–13.

    Google Scholar 

  • Laurent, D., Frederic, P., Laurence, L., Sylvie, C., Canan, C., Kevin, W., et al. (1998). Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resist- ance to the bacterial soil borne pathogen Ralstonia solanacearum. MPMI, 11, 659–667.

    Article  Google Scholar 

  • Lee, S. Y., Fai, K. W., Zakaria, M., Ibrahim, H., Othman, Y. R., Gwag, G. J., et al. (2007). Characterization of polymorphic microsatellite markers, isolated from ginger (Zingiber officinale Rosc.). Molecular Ecology Notes, 7, 1009–1011.

    Article  CAS  Google Scholar 

  • Lincy, A. K. (2007). Investigation on direct in vitro shoot regeneration from aerial stem explants of ginger (Zingiber officinale Rosc.) and its field evaluation. Ph.D. Thesis, Calicut University, Calicut, Kerala State.

    Google Scholar 

  • Lincy, A. K., Jayarajan, K., & Sasikumar, B. (2008). Relationship between vegetative and rhizome characters and final rhizome yield in micropropagated ginger plants (Zingiber officinale Rosc.) over two generations. Scientia Horticulturae, 118, 70–73.

    Article  CAS  Google Scholar 

  • Lincy, A. K., Remashree, A. B., & Sasikumar, B. (2009). Indirect and direct somatic embryogenesis from aerial stem explants of ginger (Zingiber officinale Rosc.). Acta Botanica Croatica, 68, 93–103.

    CAS  Google Scholar 

  • Minas, G. J. (2010). Ginger (Zingiber officinale Rosc.) sanitation and micropropagation in vitro. Acta Horticulturae, 853, 93–98.

    CAS  Google Scholar 

  • Muda, A. M., Ibrahim, H., & Norzulaani, N. (2004). Differentiation of three varieties of Zingiber officinale Rosc. by RAPD finger printing. Malaysian Journal of Science, 23, 135–139.

    Google Scholar 

  • Murasighe, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  Google Scholar 

  • Nadgauda, R. S., Kulkarni, D. B., & Mascarenhas, A. F. (1980). Development of plantlets from tissue cultures of ginger. In: Proceedings of the Annual Symposium on Plantation Crops, Calicut, Kerala State, India, pp. 143–147.

    Google Scholar 

  • Nayak, S., Naik, P. K., Laxmikanta, A., Mukherjee, A. K., Panda, P. C., & Premananda, D. (2005). Assessment of genetic diversity among 16 promising cultivars of ginger using cytological and molecular markers. Zeitschrift für Naturforschung. Section C, 60, 485–492.

    Article  CAS  Google Scholar 

  • Nazeem, P. A., Joseph, L., Rani, T. G., Valsala, P. A., Philip, S., & Nair, G. S. (1996). Tissue culture system for in vitro pollination and regeneration of plantlets from in vitro raised seeds of ginger—Zingiber officinale Rosc. International Symposium on Medicinal and Aromatic Plants, ISHS, Acta Horticulture, 426, 10–15.

    Google Scholar 

  • Ngamriabsakul, C., Newman, M. F., & Cronk, Q. C. B. (2003). The phylogeny of tribe Zingiberaceae (Zingiberaceae) based on its (nrDNA) and trnl-f (cDNA) sequences. Edinburgh Journal of Botany, 60, 483–507.

    Article  Google Scholar 

  • Palai, S. K., Rout, G. R., Samantaray, S., & Das, P. (2000). Biochemical changes during in vitro organogenesis in Zingiber officinale Rosc. Journal of Plant Biology, 27, 153–160.

    Google Scholar 

  • Prathanturarug, S., Angsumalee, D., Pongsiri, N., Suwacharangoon, S., & Jenjittikul, T. (2004). In vitro propagation of Zingiber petiolatum (Holttum) I. Theilade, A rare Zingiberaceous plant from Thailand. Journal of In Vitro Cell Development Biology Plant, 40, 317–320.

    Article  CAS  Google Scholar 

  • Priya, R. S., & Subramanian, R. B. (2008). Isolation and molecular analysis of R-gene in resist- ant Zingiber officinale (ginger) varieties against Fusarium oxysporum f.sp. zingiberi. Bioresource Technology, 99, 4540–4543.

    Article  CAS  Google Scholar 

  • Rajani, H., & Patil, S. S. (2009). In vitro responses of different explants types on shoot and root development of ginger. Acta Horticulturae, 829, 349–353.

    Article  CAS  Google Scholar 

  • Ramachandran, K., & Chandrashekaran, P. N. (1992). In vitro roots and rhizomes from anther explants of ginger. Journal of Spices and Aromatic Crops, 1(1), 72–74.

    Google Scholar 

  • Ravindran, P. N., Babu, K. N., Saji, K. V., Geetha, S. P., Praveen, K., & Yamuna, G. (2004). Conservation of spices genetic resources in vitro gene banks (p. 81). Calicut: ICAR Project Report. Indian Institute of Spices Research.

    Google Scholar 

  • Renner, T., Bragg, J., Driscoll, H. E., Cho, J., Jackson, A. O., & Specht, C. D. (2009). Virus-induced gene silencing in the culinary ginger (Zingiber officinale): An effective mechanism for down-regulating gene expression in tropical monocots. Molecular Plant, 2, 1084–1094.

    Article  CAS  PubMed  Google Scholar 

  • Rout, G. R., Das, P., Goel, S., & Raina, S. N. (1998). Determination of genetic stability of micro- propagated plants of ginger using random amplified polymorphic DNA (RAPD) markers. Botanical Bulletin- Academia Sinica, 389(1), 23–29.

    Google Scholar 

  • Rout, G. R., Palai, S. K., Samantaray, S., & Das, P. (2001). Effect of growth regulator and culture conditions on shoot multiplication and rhizome formation in ginger (Zingiber officinale Rosc.) in vitro. In Vitro Cell Development Biology Plant, 37(6), 814–819.

    Article  CAS  Google Scholar 

  • Sajina, A., Mini, P. M., John, C. Z., Babu, K. N., Ravindran, P. N., & Peter, K. V. (1997). Micropropagation of large cardamom (Amomum subulatum Roxb.). Journal of Spices and Aromatic Crops, 6, 145–148.

    Google Scholar 

  • Sakamura, F., Oghihara, K., Suga, T., Taniguchi, K., & Tanaka, R. (1986). Volatile constituents of Zingiber officinale rhizome produced by in vitro shoot tip culture. Phytochemical, 25(6), 1333–1335.

    Article  CAS  Google Scholar 

  • Samsudeen, K. (1996). Studies on Somaclonal Variation Produced by In Vitro Culture in Zingiber officinale Rosc. Ph.D. Thesis, University of Calicut, Calicut, Kerala State.

    Google Scholar 

  • Sasikumar, B., Zacharariah, J. (2003). Organization of ginger and turmeric germplasm based on molecular characterization. In: Final Report ICAR Ad Hoc Project IISR, Calicut, Kerala State.

    Google Scholar 

  • Semagn, K., Bjornstad, A., & Ndjiondjop, M. N. (2006). An overview of molecular marker methods for plants. African Journal of Biotechnology, 5, 2540–2568.

    CAS  Google Scholar 

  • Sharma, T. R., & Singh, B. M. (1995a). Simple and cost-effective medium for propagation of ginger (Zingiber officinale). Indian Journal of Agricultural Sciences, 65, 506–508.

    Google Scholar 

  • Sharma, T. R., & Singh, B. M. (1995b). In vitro micro rhizome production in Zingiber officinale Roscoe. Plant Cell Reports, 15, 274–277.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, T. R., Singh, B. M., & Chauhan, R. S. (1994). Production of encapsulated buds of Zingiber officinale Roscoe. Plant Cell Reports, 13, 300–302.

    Article  CAS  PubMed  Google Scholar 

  • Silva, M. F., da Pescador, R., Rebelo, R. A., & Stumer, S. L. (2008). The affect of arbuscular mycorrhizal fungal isolates on the development and oleoresin production of micropropagated zingiber officinale. Brazilian Journal of Plant Physiology, 20, 119–130.

    Article  Google Scholar 

  • Smith, M. K., & Hamill, S. D. (1996). Field evaluation of micropropagated and conventionally propagated ginger in subtropical Queensland. Australian Journal of Experimental Agriculture, 36, 347–354.

    Article  Google Scholar 

  • Smith, M. K., Hamill, S. D., Gogel, B. J., & Severn-Ellis, A. A. (2004). Ginger (Zingiber officinale) autotetraploid with improved processing quality produced by an in vitro colchicines treatment. Australian Journal of Experimental Agriculture, 44, 1065–1072.

    Article  CAS  Google Scholar 

  • Steward, F. C., Mapes, M. O., & Mears, J. S. (1958). Growth and organized development of cultured cells. II Organization in cultures grown from freely suspended cells. American Journal of Botany, 45, 705–708.

    Article  Google Scholar 

  • Sultana, A., Hassan, L., Ahmad, S. D., Shah, A. H., Batool, F., Rahman, R., et al. (2009). In vitro regeneration of ginger using leaf, shoot tip and root explants. Pakistan Journal of Botany, 41, 1667–1676.

    Google Scholar 

  • Suma, B., Keshavachandran, R., & Nybe, E. V. (2008). Agrobacterium tumefaciens mediated transformation and regeneration of ginger (Zingiber officinale Rosc.). Journal of Tropical Agriculture, 46, 38–44.

    CAS  Google Scholar 

  • Sumathi, V. (2007). Studies on Somaclonal Variation in Zingiberaceous Crops. Ph.D. Thesis, Calicut University, Calicut, Kerala State, p. 227.

    Google Scholar 

  • Sundararaj, G., Anuradha, A., & Rishi, K. T. (2010). Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Scientia Horticulturae, 125, 761–766.

    Article  CAS  Google Scholar 

  • Tashiro, Y., Onimaru, H., Shigyo, M., Isshiki, S., & Miyazaki, S. (1995). Isozyme mutations induced by treatment of cultured shoot tips with alkylating agent in ginger cultivars (Zingiber officinale Rosc.). Bulletin of the Faculty of Agriculture Saga University, 79, 29–35.

    CAS  Google Scholar 

  • Tauqeer, A., Nazreen, Z., & Khan, N. H. (2007). Enhanced Zingiber officinale shoot multiplication in liquid culture. Pakistan Journal of Scientific and Industrial Research, 50, 145–148.

    Google Scholar 

  • Thomas, E. G., Aswati Nair, R., Sabu, M., & George, T. (2010). Molecular evolution of a PR-5 protein gene in Zingiber species with contrasting breeding systems. In: Proceedings of International Symposium on Biocomputing No 45.

    Google Scholar 

  • Tilad, P., Sharma, R., & Singh, B. M. (2002). Salicylic acid induced insensitivity to culture filtrate of Fusarium oxysporum f. sp. Zingiberi in the calli of Zingiber officinale Roscoe. European Journal of Plant Pathology, 108, 31–39.

    Article  Google Scholar 

  • Tyagi, R. K., Bhat, S. R., & Chandel, K. P. S. (1998). In vitro conservation strategies for species crop germplasm: Zingiber, Curcuma and Piper species. In N. M. Mathew & C. K. Jacob (Eds.), Developments in plantation crop research (pp. 77–82). New Delhi: Allied Publishers Limited.

    Google Scholar 

  • Tyagi, R. K., Agarwal, A., & Yusuf, A. (2006). Conservation of Zingiber germplasm through in vitro rhizome formation. Scientia Horticulturae, 108, 210–219.

    Article  CAS  Google Scholar 

  • Valsala, P. A., Nair, G. S., & Nazeem, P. A. (1996). Seed set in ginger (Zingiber officinale Rosc.) through in vitro pollination. Journal of Tropical Agriculture, 34, 81–84.

    Google Scholar 

  • Wahyuni, S., Xu, D. H., Bermawie, N., Tsunematsu, H., & Ban, T. (2003). Genetic relationships among ginger accessions based on AFLP marker. Journal of Bioteknologi Pertanian, 8, 60–68.

    Google Scholar 

  • Wang, M., Niu, Y., Song, M., & Tang, Q. L. (2010). Tetraploid of Zingiber officinale Roscoe. in vitro inducement and its morphology analysis. China Vegetables DOI: CNKI: SUN: ZGSC. O.2010-04-013.

    Google Scholar 

  • Xuan, P., Guo, Y., Yue, C., & Yin, C. (2004). Study on tissue culture and rapid propagation of ginger (Zingiber officinale). Southwest China Journal of Agriculture, 17, 484–486.

    Google Scholar 

  • Yamuna, G. (2007). Studies on cryopreservation of spices genetic resources. Ph.D. Thesis, Calicut University, Calicut, Kerala State.

    Google Scholar 

  • Yamuna, G., Sumathi, V., Geetha, S. P., Praveen, K., Swapna, N., & Babu, K. N. (2007). Cryopreservation of in vitro grown shoot of ginger (Zingiber officinale Rosc). Cryo Letters, 28, 241–252.

    CAS  PubMed  Google Scholar 

  • Yeoman, M. M. (1987). Bypassing the plant. Annals of Botany, 60, 175–188.

    Article  Google Scholar 

  • Yua, F., Haradab, H., Yamasakia, K., Okamotoa, S., Hirasec, S., Tanakac, Y., et al. (2008). Isolation and functional characterization of a β-eudesmol synthase, a new sesquiterpene synthase from Zingiber zerumbet Smith. FEBS Letters, 582, 565–572.

    Article  CAS  Google Scholar 

  • Zarate, R., & Yeoman, M. M. (1996). Changes in the amounts of (6) gingerol and derivatives during a culture cycle of ginger, Zingiber officinale. Plant Science (Limerick), 121, 115–122.

    Article  CAS  Google Scholar 

  • Zheng, Y., Liu, Y., Ma, M., & Xu, K. (2008). Increasing in vitro microrhizome production in ginger (Zingiber officinale Roscoe.). Acta Physiology Plant, 1, 519–523.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nair, K.P. (2019). The Biotechnology of Ginger. In: Turmeric (Curcuma longa L.) and Ginger (Zingiber officinale Rosc.) - World's Invaluable Medicinal Spices. Springer, Cham. https://doi.org/10.1007/978-3-030-29189-1_19

Download citation

Publish with us

Policies and ethics