Skip to main content

Analysis of Food Emulsifiers

  • Chapter
  • First Online:
Food Emulsifiers and Their Applications
  • 2285 Accesses

Abstract

Composition and purity are critical to safety and performance of food emulsifiers. Wet chemical methods such as titrations, color, and melting points have been used since the early twentieth century. These methods are inexpensive and well accepted. On the other hand, they generate large volumes of waste solvents and require skilled analysts. Modern instrumental methods use small samples, can be automated, and are less subjective. Their disadvantages are equipment expense and maintenance costs.

Separation technologies such as gas-liquid chromatography and high performance liquid chromatography are useful for determining composition. Nuclear magnetic resonance, ultraviolet and infrared spectroscopy, and mass spectrometry provide detailed structural information. Combinations of technologies can completely characterize a complex emulsifier mixture.

Some analytical specifications are mandated by government agencies and trade associations. In most cases they are negotiated by the supplier and food manufacturer. Setting reliable specifications can ensure good performance, safety, and fewer product recalls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blanco M et al (2004) Analytical control of an esterification batch reaction between glycerine and fatty acids by near-infrared spectroscopy. Anal Chem Acta 521(13):143–148

    Article  CAS  Google Scholar 

  • Bosco M et al (1997) Organic solvent systems for 31P nuclear magnetic resonance analysis of lecithin phospholipids: applications to two-dimensional gradient-enhanced 1H-detected heteronuclear multiple quantum coherence experiments. Anal Biochem 245(1):38–47

    Article  CAS  PubMed  Google Scholar 

  • Bruemmer J (1971) Brot Gebaeck 25(11):217–220

    CAS  Google Scholar 

  • Bruschweiler H, Dieffenbacher A (1991) Determination of mono- and diglycerides by capillary gas chromatography: results of a collaborative study and the standardized method. Pure Appl Chem 63(8):1153–1162

    Article  Google Scholar 

  • Byrdwell W (2005a) Modern methods for lipid analysis by liquid chromatography/mass spectrometry and related techniques. AOCS Press, Champaign

    Book  Google Scholar 

  • Byrdwell W (2005b) Atmospheric ionization techniques in modern lipid analysis. In: Byrdwell W (ed) Modern methods of lipid analysis. AOCS Press, Champaign, pp 1–18

    Google Scholar 

  • Byrdwell W (2005c) Dual parallel liquid chromatography/mass spectrometry for lipid analysis. In: Byrdwell W (ed) Modern methods for lipid analysis. AOCS Press, Champaign, pp 510–576

    Google Scholar 

  • Cai S, Syage I (2006) J Chromatogr AII 10:15–26

    Article  CAS  Google Scholar 

  • Christie W (1992) Detectors for high performance liquid chromatography of lipids with special reference to evaporative light scattering detection. In: Christie W (ed) Advances in lipid methodology. The Oily Press, Ayr, Scotland

    Google Scholar 

  • Christie W (1996) Separation of phospholipid classes by high performance chromatography. Advances in lipid methodology, vol 3. The Oily Press, Bridgwater, pp 77–108

    Chapter  Google Scholar 

  • Christie W, Ha X (2010) Lipid analysis: isolation, separation, identification, and lipidomic analysis4th edn. The Oily Press, Bridgwater

    Book  Google Scholar 

  • Cruz R (2014) Methods in food analysis. CRC Press, New York

    Google Scholar 

  • Dang H (2006) Composition analysis of two batches of polysorbate 60 using MS and NMR techniques. J Pharm Biomed Anal 40(5):1155–1165

    Article  CAS  Google Scholar 

  • Daniels D (1982) J Assoc Offic Anal Chem 65(1):162–165

    CAS  Google Scholar 

  • Daniels D et al (1985) J Agric Food Chem 33(3):368–372

    Article  Google Scholar 

  • DeMeulenaer B et al (2000) Combined liquid and gas chromatographic characterisation of polyglycerol fatty acid esters. J Chromatogr 896(1–2):239–251

    Article  CAS  Google Scholar 

  • Dieffenbacher A (1989) Rev Fr Corps Gras 36(2):64

    CAS  Google Scholar 

  • Diepenmaat-Walters M et al (1997) J Am Soc Brew Chem 55(4):147–152

    Google Scholar 

  • Duden R, Fricker A (1977) Dünnschichtchromatographische Bestimmung von Mono- und Digalactosyldiglyceriden sowie Lecithinen in Spinat. Fettee Seifen Anstrichm 79(12):489–491

    Article  CAS  Google Scholar 

  • Ekoos K (2012) Lippidomics: technologies and applications. Wiley-VCH

    Google Scholar 

  • Everts F, Davis J (2000) 1H and 13C NMR of multilamellar dispersions of polyunsaturated (22:6) phospholipids. Biophys J 79(2):885–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fanali S et al (2013) Liquid chromatography: applications. Elsevier, Amsterdam

    Google Scholar 

  • Federal Register (2013) Code of Federal Regulations, title 21, food and drug, Sections 172, 182, 184

    Google Scholar 

  • Filip V, Kleunova M (1993) Bestimmung von Mono-, Di- und Triglyceriden mit HPLC. Z Lebensmit Unters Forsch 196(6):532–535

    Article  CAS  Google Scholar 

  • Firestone D (2013a) Official methods and recommended practices of the AOCS6th edn., third printing. AOCS Publications, Champaign, IL

    Google Scholar 

  • Firestone D (2013b) Method Cd 11-57: α-monoglyceride

    Google Scholar 

  • Firestone D (2013c) Method Cd 3d-63: acid value of fats and oils; Method Ja 6-55: acid value of lecithin

    Google Scholar 

  • Firestone D (2013d) Methods Cd 1-25: iodine value of fats and oils; Ja 14-91: iodine value of lecithin

    Google Scholar 

  • Firestone D (2013e) Method Cd 8b-90: peroxide value using isooctane; Ja 8-87: peroxide value of lecithin

    Google Scholar 

  • Firestone D (2013f) Method Cd 3c-91: saponification value of fats and oils, modified using methanol

    Google Scholar 

  • Firestone D (2013g) Method Cd 14-40: hydroxyl value of fats and oils (acetyl value); cd 13-60: hydroxyl value of fatty oils and alcohols

    Google Scholar 

  • Firestone D (2013h) Method Cd 5-40: Reichert-Meisel value

    Google Scholar 

  • Firestone D 2013i) Method Ca 2e-84: moisture by Karl Fischer method in fats & oils

    Google Scholar 

  • Firestone D (2013j) Method Tb 2-64: moisture by Karl fisher method in industrial oil derivatives. Method Ja 2b-87: moisture by Karl Fischer method in lecithin

    Google Scholar 

  • Firestone D (2013k) Method Cc 17-95: soap in oil

    Google Scholar 

  • Firestone D (2013l) Method Ca 12a-02: colorimetric determination of phosphorus in fats and oils

    Google Scholar 

  • Firestone D (2013m) Methods Cc 13b-45, color: Lovibond (Wesson), and cc 13e-92, color: lovibond (ISO standard)

    Google Scholar 

  • Firestone D (2013n) Methods Td 1a-64, color: gardner (industrial oils) and Ja 9-87, color: gardner (lecithin)

    Google Scholar 

  • Firestone D (2013o) Method Cc 13j-97, color (automated method)

    Google Scholar 

  • Firestone D (2013p) Method Cc 13a-43, color (FAC)

    Google Scholar 

  • Firestone D (2013q) Method Cc 13c-50, color (spectrophotometric method for oils)

    Google Scholar 

  • Firestone D (2013r) Method Cc 7-25 refractive index (fats and oils)

    Google Scholar 

  • Firestone D (2013s) Method Cc1-25, melting point: capillary tube method

    Google Scholar 

  • Firestone D (2013t) Method Cc 3-25, slip melting point (AOCS Standard); method Cc 3b-92: slip melting point (ISO method)

    Google Scholar 

  • Firestone D (2013u) Method Cc 18-80, mettler dropping point

    Google Scholar 

  • Firestone D (2013v) Methods Ja 11-7, viscosity: lecithin (bubble time method); and Da 26-42, viscosity: transparent liquids (bubble time method)

    Google Scholar 

  • Firestone D (2013w) Method Ja 10-87, viscosity: lecithin (Brookfield)

    Google Scholar 

  • Firestone D (2013x) Method Cc 10a-25 specific gravity of liquid oils and fats

    Google Scholar 

  • Firestone D (2013y) Method Cc 10b-25: specific gravity of solid fats and waxes

    Google Scholar 

  • Firestone D (2013z) Method Ce 1-62: fatty acid composition by GLC of methyl esters; method Cd 28-10: glyceryl fatty acid esters in edible oil

    Google Scholar 

  • Firestone D (2013aa) Method Cd 11b-91: mono- and diglycerides by capillary GLC

    Google Scholar 

  • Firestone D (2013ab) Method Cd 11d-96: Mono- and diglycerides by HPLC – ELSD

    Google Scholar 

  • Firestone D (2013ac) Method Ja 7b-91: phospholipids in lecithin concentrates by HPLC; Method Ja 7c-07: phospholipids in lecithin concentrates by HPLC-ELSD

    Google Scholar 

  • Firestone D (2013ad) Method Ca 14b-96: free glycerin by HPLC-ELSD

    Google Scholar 

  • Firestone D (2013ae) Method Cd 25a-00: heat exchange fluid by HPLC

    Google Scholar 

  • Firestone D (2013af) Method Ca 12a-02: phosphorus in oils (ISO Method)

    Google Scholar 

  • Firestone D (2013ag) Method Cd 1e-01: iodine value by NIR

    Google Scholar 

  • Firestone D (2013ah) Method Ca 18-91: lead in oils – graphite furnace

    Google Scholar 

  • Firestone D (2013ai) Methods 15–75: iron, copper, and chromium by AAS; Ca 18-79: iron, copper, and chromium in oils by AAS - graphite furnace

    Google Scholar 

  • Firestone D (2013aj) Method Ca 17-01: trace metals by ICP-ECS

    Google Scholar 

  • Firestone D (2013ak) Method Cd 16b-93: solid fat content (SFC) by low-resolution nuclear magnetic resonance (direct method); and Cd 16-81: solid fat content (SFC) by low-resolution nuclear resonance (indirect method)

    Google Scholar 

  • Franzke C (1977) Z Lebensm Unters Forsch 163(3):206–207

    Article  CAS  PubMed  Google Scholar 

  • Franzke C, Kroll J (1980) Zur enzymatischen milchsäurebestimmung in emulgatoren. Nahrung 24(1):89–90

    Article  CAS  Google Scholar 

  • Frison-Norrie S (2001) Investigating the molecular heterogeneity of polysorbate emulsifiers by MALDI-TOF MS. J Agric Food Chem 49(7):3335–3340

    Article  CAS  PubMed  Google Scholar 

  • Gaonkar A, McPherson A (2005) Ingredient interactions: effects on food quality. CRC Press, Boca Raton

    Google Scholar 

  • Garti N (1981) J Liq Chromatogr 94(7):1173–1194

    Article  Google Scholar 

  • Garti N, Acerin A (1983) J Am Oil Chem Soc 690(6):1151–1154

    Article  Google Scholar 

  • Gillet B et al (1998) Analysis 26(3):M26–M33

    CAS  Google Scholar 

  • Glonek T, Merchant R (1996) 31P nuclear magnetic resonance profiling of phospholipids. In: Christie W (ed) Advances in lipid methodology, vol 3. The Oily Press, Ayr, Scotland, pp 37–75

    Google Scholar 

  • Grdadolnik J, Hadm D (1993) Conformational effects of metal salt binding to the polar head of phosphatidylcholines investigated by FTIR spectroscopy. Chem Phys Lipids 65(2):121–132

    Article  Google Scholar 

  • Gross H (2011) Mass spectrometry: a textbook2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Gunstone F (1993) High resolution 13C NMR spectroscopy of lipids. In: Christie W (ed) Advances in lipid methodology, vol 2. The Oily Press, Ayr, Scotland, pp 1–68

    Google Scholar 

  • Hammond E (1993) Chromatography for the analysis of lipids. CRC Press, Boca Raton

    Google Scholar 

  • Han X, Gross R (2005) Toward total cellular lipidome analysis by ESI mass spectrometry from a crude lipid extract. In: Byrdwell W (ed) Modern methods of lipid analysis. AOCS Press, Champaign, pp 488–509

    Google Scholar 

  • Hartman l et al (1980) Method for the determination of phosphorus in lipids and lipid-containing materials. Analyst 105(1247):173–176

    Article  CAS  PubMed  Google Scholar 

  • Hasenhuettl G et al (1990) J Am Oil Chem Soc 67(11):797–799

    Article  Google Scholar 

  • Hore P (2015) Nuclear magnetic resonance. Oxford University Press, Oxford

    Google Scholar 

  • Hsieh J et al (1981) General method for the analysis of phosphatidylcholines by high-performance liquid chromatography. J Chromatogr 208(2):398–403

    Article  CAS  PubMed  Google Scholar 

  • Hummel D (2000a) Handbook of surfactant analysis. John Wiley & Sons, New York, p 232

    Google Scholar 

  • Hummel P (2000b) p 233

    Google Scholar 

  • Hurst W, Martin R (1984) The analysis of phospholipids in soy lecithin by HPLC. J Am Oil Chem Soc 61(9):1462–1463

    Article  CAS  Google Scholar 

  • Huyghebaert G, Baert L (1992) Chromatographia 34(11–12):557–562

    Google Scholar 

  • Indrastri D (2010) J Am Oil Chem Soc 87:1257–1262

    Google Scholar 

  • Ingber N (1986) Unpublished Research

    Google Scholar 

  • Istratov V et al (2003) Linear-dendritic nonionic poly(propylene oxide)–polyglycerol surfactants. Tetrahedron 59(22):4017–4024

    Article  CAS  Google Scholar 

  • Iwasaki Y et al (2013) J Am Oil Chem Soc 90(7):951–957

    Article  CAS  Google Scholar 

  • Jakubska E et al (1977) Axta Aliment Pol 3(1):79–84

    CAS  Google Scholar 

  • Jodlbauer D (1981) Veroeff Arbeitsgen Getreideeforsch 53(8):42–49

    Google Scholar 

  • Kaitaranta J, Bessman S (1981) Anal Chem 55(8):1232–1235

    Article  Google Scholar 

  • Karrer R, Herberg H (1992) Analysis of sucrose fatty acid esters by high temperature gas chromatography. J High Res Chromatogr 15(9):585–589

    Article  CAS  Google Scholar 

  • Kato H et al (1989) J Assoc Offic Anal Chem 72(1):27–29

    CAS  Google Scholar 

  • Kostelnik R, Costellano S (1973) J Magn Reson 9(2):291–295

    CAS  Google Scholar 

  • Kumar T et al (1984) J Chromatogr A 398:360–365

    Article  Google Scholar 

  • Larsen A, Hyattumff E (2005) Analysis of phospholipids by liquid chromatography coupled with online electrospray ionization mass spectrometry and tandem mass spectrometry. In: Byrdwell W (ed) Modern methods of lipid analysis. AOCS Press, Champaign, IL, pp 19–60

    Google Scholar 

  • Latimer G (2012) Official methods of analysis of AOAC19th edn. AOAC International, Gaithersburg, MD

    Google Scholar 

  • Lee T (1988) J Assoc Off Anal Chem 71(4):785–788

    CAS  PubMed  Google Scholar 

  • Lee T et al (1993) J Am Oil Chem Soc 70(4):343–347

    Article  Google Scholar 

  • Lew H (1975) Veroff. Landwirtsch Chem Bundesversuchsanst Linz 97(10):10

    Google Scholar 

  • Li Y-K et al (2002) Sepu 20(5):476–478

    CAS  Google Scholar 

  • Li H et al (2009) Fourier transform near infrared spectroscopy as a quality control tool for the analysis of lecithin and by-products during soybean oil processing. J Am Oil Chem Soc 86(9):835–841

    Article  CAS  Google Scholar 

  • Lindblom G (1996) Nuclear magnetic spectroscopy, lipid phase behavior, and lipid diffusion. In: Christie W (ed) Advances in lipid methodology, vol 3. The Oily Press, Ayr, Scotland, pp 132–199

    Google Scholar 

  • Lundquist G, Meloan C (1971) Determination of polysorbates in food products by reaction gas chromatography. Anal Chem 43(8):1122–1123

    Article  CAS  PubMed  Google Scholar 

  • Luquain C et al (2001) High-performance liquid chromatography determination of Bis(monoacylglycerol) phosphate and other lysophospholipids. Anal Biochem 296(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Macka M et al (1994) Analysis of silanised polyglycerols by supercritical fluid chromatography. J Chromatogr 675(1–2):267–270

    Article  CAS  Google Scholar 

  • Mazur A et al (1991) Regio- and stereoselective enzymatic esterification of glycerol and its derivatives. Chem Phys Lipids 60(2):189–199

    Article  CAS  PubMed  Google Scholar 

  • Melton S (1992) Analysis of soybean lecithins and beef phospholipids by HPLC with an evaporative light scattering detector. J Am Oil Chem Soc 69(8):784–788

    Article  CAS  Google Scholar 

  • Moelering H, Bergmeyer HU (1974) Methoden Enzym Anal 3. In: Bergenmeyer H (ed) Neubearbeitete Erweite Te Auft, vol 2. Academic Press, New York, pp 1860–1864

    Google Scholar 

  • Mueller H (1977) Die Gehalte an Lecithin und anderen Cholin-Verbindungen in Nahrungspflanzen. Fette Seifen Annstrichm 79(6):259–261

    Article  CAS  Google Scholar 

  • Murakami C et al (1989) Determination of sucrose esters of fatty acids by high performance liquid chromatography. Shokuhin Eiseigaku Zasshi 30(4):306–315

    Article  CAS  Google Scholar 

  • Murgia S et al (2003) Quantitative characterization of phospholipids in milk fat via 31P NMR using a monophasic solvent mixture. Lipids 38(5):585–591

    Article  CAS  PubMed  Google Scholar 

  • Murphy R, Gaskell S (2014) Tandem mass spectrometry of lipids: molecular analysis of complex lipids. Royal Society of Chemistry, London

    Google Scholar 

  • Murphy J, Grislett L (1969) J Am Oil Chem Soc 76(7):384

    Article  Google Scholar 

  • Nakanishi H, Tsuda T (1983) Gas-liquid chromatographic determination of monoglycerides in foods. Shokuhin Eisergaku Zasshi 24(5):474–479

    Article  CAS  Google Scholar 

  • Nunez A et al (2005) Liquid chromatography/mass spectrometry analysis of biosurfactant glycolipids. In: Byrdwell W (ed) Modern methods for lipid analysis. AOCS Press, Champaign, IL, pp 447–471

    Google Scholar 

  • Olsson U et al (1990) J Planar Chromatogr - Mod TLC 3:55–60

    CAS  Google Scholar 

  • Orfanakis A et al (2013) Characterization of polyglycerol polyricinoleate formulations using NMR spectroscopy, mass spectrometry and dynamic light scattering. J Am Oil Chem Soc 90:39–51

    Article  CAS  Google Scholar 

  • Pohle W et al (1997) J Mol Struct 408–409:273–277

    Article  Google Scholar 

  • Poole C (2014) Instrumental thin-layer chromatography. Elsevier, Amsterdam

    Google Scholar 

  • Press K et al (1981) Comparison of high-performance liquid chromatography and proton nuclear magnetic resonance in determining the phosphatidylcholine content in soy lecithin. J Agric Food Chem 29(5):1096–1098

    Article  CAS  Google Scholar 

  • Ranger RR, Wenz K (1989) J Planar Chromatogr – Mod TLC 2(1):24–27

    Google Scholar 

  • Regula E (1975) Dünnschichtchromatographischer nachweis von calcium- und natrium-stearoyllactylat neben anderen emulgatoren in lebensmitteln. J Chromatogr 115(2):639–644

    Article  CAS  PubMed  Google Scholar 

  • Rhee J, Shin M (1982) Analysis of phosphatidylcholine in soy lecithins by HPLC. J Am Oil Chem Soc 59(2):98–99

    Article  CAS  Google Scholar 

  • Sacchi P et al (1990) Revista Italiano delle Sostanze Grasse 67(5):245–252

    CAS  Google Scholar 

  • Saito K et al (1987) Determination of polysorbates in powdered soup packed in commercially imported instant noodles. Shokuhin Eisaigaku Zasshi 28(5):372–377

    Article  CAS  Google Scholar 

  • Schmidt M (1976) Offenders. Getreide Mehl Brot 30(3):62–64

    Google Scholar 

  • Schutze T (1977) Analytische Charakterisierung von Polyglycerinester-Emulgatoren. Nahrung 21(5):405–415

    Article  Google Scholar 

  • Schuyl P, VanPlaterink C (1994) Analysis of sucrose polyesters with electrospray mass spectrometry. 42nd ASMS Conference on Mass Spectrometry, Chicago, IL

    Google Scholar 

  • Senelt S et al (1986) Turrk Hij Deney Biyol Derg 43(1):23–45

    CAS  Google Scholar 

  • Sheeley D et al (1986) Spectroscopy 1(2):38–39

    CAS  Google Scholar 

  • Shmidt A (1979) Lebensmittelindustrie 26(4):172–173

    CAS  Google Scholar 

  • Sotirhos N et al (1986) Dev Food Sci 12:601–608

    CAS  Google Scholar 

  • Tajano S, Kondoh Y (1987) Monoglyceride analysis with reversed phase HPLC. J Am Oil Chem Soc 64(7):1001–1003

    Article  Google Scholar 

  • Takagi T, Ando Y (1994) Separation of monoacylglycerols by high-performance liquid chromatography on nitrile-bonded phase. J Am Oil Chem Soc 71(4):459–460

    Article  CAS  Google Scholar 

  • Tanaka M et al (1979) Yukagaku 28(2):96–99

    CAS  Google Scholar 

  • Tasumi M (2014) Introduction to experimental infrared spectroscopy: fundamentals and practical methods. Wiley, New York

    Google Scholar 

  • Tonogau Y et al (1987) Detection and determination of polysorbate in powdered soup of instant noodles by colorimetry. Shokuhin Eisaigaku Zasshi 28(6):427–435

    Article  Google Scholar 

  • Trautler H, Nikiforov A (1984) Anal Chem Symp Ser 21:299–304

    Google Scholar 

  • Tsuda T et al (1984) J AOAC Int 84(2):498–506

    Google Scholar 

  • Tumanaka K, Fujita N (1990) Yukagaku 19(6):393–397

    Google Scholar 

  • Uematsu Y et al (2001) Determination of sucrose esters of fatty acids in food additive premixes by gas chromatography and confirmation of identity by gas chromatography/mass spectrometry. J AOAC Int 84(2):498–506

    CAS  PubMed  Google Scholar 

  • Watanabe M et al (1986) Yakagaku 35(12):1018–1024

    CAS  Google Scholar 

  • Yamanaka S, Kudo K (1991) CA 115:123048. Japan 03107765

    Google Scholar 

  • Yusupoca I, et al. (1976) Khim. Prom-St. 598-600, CA 88: 35919

    Google Scholar 

Download references

Acknowledgements

This chapter was written with fond memories of Nate Ingber, who had an incredible talent for applying modern instrumental techniques to difficult analytical challenges. The author is indebted to Julia Hasenhuettl and Shirley Moore for their dedicated efforts in literature searches and manuscript preparation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasenhuettl, G.L. (2019). Analysis of Food Emulsifiers. In: Hasenhuettl, G., Hartel, R. (eds) Food Emulsifiers and Their Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-29187-7_3

Download citation

Publish with us

Policies and ethics