Skip to main content

Mechanistic vs Statistical Extrapolation in Preclinical Research in Psychiatry: Challenging the Received View

  • Chapter
  • First Online:
Uncertainty in Pharmacology

Abstract

This chapter questions the received view that in medical research extrapolation from animal models mainly consists in establishing mechanisms of human pathological states in organisms, thanks to a step by step comparison of causal pathways. Mechanistic extrapolation takes the form: (1) cause C brings out effect E in animal through causal pathway M, (2) M is similar in animals and humans, (3) therefore C will likely bring out E in humans. As the example of psychiatric research shows, such mechanistic extrapolation may be replaced by statistical extrapolation, an inference of the form: (1) An animal model A has been successful in predicting the effects E of drugs D1…Dn of a certain class; (2) A will be successful again in predicting the effects of a new drug Dn+1 of the same class. Statistical extrapolation relies on the predictive validity of a given animal model, without any knowledge of the mechanisms involved, on the sole ground of past successes of the model in predicting the effects of a class of drugs on their human target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ankeny, R. A., & Leonelli, S. (2011). What’s so special about model organisms? Studies in History and Philosophy of Science Part A, 42(2), 313–323.

    Article  Google Scholar 

  • Bartoszyk, G. D., Hegenbart, R., & Ziegler, H. (1997). EMD 68843, a serotonin reuptake inhibitor with selective presynaptic 5-HT1A receptor agonistic properties. European Journal of Pharmacology, 322(2–3), 147–153.

    Article  Google Scholar 

  • Belzung, C., & Lemoine, M. (2011). Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biology of Mood & Anxiety Disorders, 1(1), 9.

    Article  Google Scholar 

  • Belzung, C., Willner, P., & Philippot, P. (2015). Depression: From psychopathology to pathophysiology. Current Opinion in Neurobiology, 30, 24–30.

    Article  Google Scholar 

  • Broadbent, A. 2011. Inferring causation in epidemiology: Mechanisms, black boxes, and contrasts. In P. M. Illari, F. Russo, & J. Williamson, éd. Causality in the sciences. Oxford Oxford University Press, p. 45–69.

    Google Scholar 

  • Burrows, G. D., et al. (1988). Clinical effects of serotonin reuptake inhibitors in the treatment of depressive illness. The Journal of Clinical Psychiatry, 49(Suppl), 18–22.

    Google Scholar 

  • Cairncross, K. D., et al. (1977). The olfactory bulbectomized rat: A simple model for detecting drugs with antidepressant potential [proceedings]. British Journal of Pharmacology, 61(3), 497.

    Google Scholar 

  • Campaner, R. (2011). Understanding Mechanisms in the Health Sciences. Theoretical Medicine and Bioethics, 32(1), 5–17.

    Article  Google Scholar 

  • Clarke, B., et al. (2014). Mechanisms and the evidence hierarchy. Topoi, 33(2), 339–360.

    Article  Google Scholar 

  • Cryan, J. F., Valentino, R. J., & Lucki, I. (2005). Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neuroscience and Biobehavioral Reviews, 29(4-5), 547–569.

    Article  Google Scholar 

  • Fuller, R. W., Perry, K. W., & Molloy, B. B. (1974). Effect of an uptake inhibitor on serotonin metabolism in rat brain: Studies with 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine (Lilly 110140). Life Sciences, 15(6), 1161–1171.

    Article  Google Scholar 

  • Gottlieb, P., Wandall, T., & Overø, K. F. (1980). Initial, clinical trial of a new, specific 5-HT reuptake inhibitor, citalopram (Lu 10-171). Acta Psychiatrica Scandinavica, 62(3), 236–244.

    Article  Google Scholar 

  • Griebel, G., & Beeské, S. (2012). Is there still a future for neurokinin 3 receptor antagonists as potential drugs for the treatment of psychiatric diseases? Pharmacology & Therapeutics, 133(1), 116–123.

    Article  Google Scholar 

  • Griebel, G., & Holmes, A. (2013). 50 years of hurdles and hope in anxiolytic drug discovery. Nature Reviews Drug Discovery, 12(9), 667–687.

    Article  Google Scholar 

  • Hesse, M. B. (1970). Models and analogies in science (New edition). University of Notre Dame Press.

    Google Scholar 

  • Howick, J. (2011). The philosophy of evidence-based medicine. Wiley-Blackwell, Bmj Books.

    Google Scholar 

  • Hyttel, J. (1977). Neurochemical characterization of a new potent and selective serotonin uptake inhibitor: Lu 10-171. Psychopharmacology, 51(3), 225–233.

    Article  Google Scholar 

  • Illari, P. M. (2011). Mechanistic evidence: Disambiguating the Russo-Williamson thesis. International Studies in the Philosophy of Science, 25(2), 139–157.

    Article  Google Scholar 

  • Katz, R. J., Roth, K. A., & Carroll, B. J. (1981). Acute and chronic stress effects on open field activity in the rat: Implications for a model of depression. Neuroscience and Biobehavioral Reviews, 5(2), 247–251.

    Article  Google Scholar 

  • Koe, B. K., et al. (1983). Sertraline, 1S,4S-N-methyl-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-1-naphthylamine, a new uptake inhibitor with selectivity for serotonin. The Journal of Pharmacology and Experimental Therapeutics, 226(3), 686–700.

    Google Scholar 

  • LaCaze, A. (2011). The Role of Basic Science in Evidence-Based Medicine. Biology and Philosophy, 26(1), 81–98.

    Article  Google Scholar 

  • LaFollette, H., & Shanks, N. (1995). Two models of models in biomedical research. Philosophical Quarterly, 45(179), 141–160.

    Article  Google Scholar 

  • Lassen, J. B. (1978). Influence of the new 5-HT-uptake inhibitor paroxetine on hypermotility in rats produced by p-chloroamphetamine (PCA) and 4,alpha-dimethyl-7-tyramine (H 77/77). Psychopharmacology, 57(2), 151–153.

    Article  Google Scholar 

  • Lemberger, L., et al. (1978). Pharmacologic effects in man of a specific serotonin-reuptake inhibitor. Science (New York, N.Y.), 199(4327), 436–437.

    Article  Google Scholar 

  • Machamer, P. K., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25.

    Article  Google Scholar 

  • Meltzer, H. Y., et al. (1979). Extrapyramidal side effects and increased serum prolactin following fluoxetine, a new antidepressant. Journal of Neural Transmission, 45(2), 165–175.

    Article  Google Scholar 

  • Meunier, R. (2012). Stages in the development of a model organism as a platform for mechanistic models in developmental biology: Zebrafish, 1970–2000. Studies in History and Philosophy of Science Part C, 43(2), 522–531.

    Article  Google Scholar 

  • Overmier, J. B., & Seligman, M. E. (1967). Effects of inescapable shock upon subsequent escape and avoidance responding. Journal of Comparative and Physiological Psychology, 63(1), 28–33.

    Article  Google Scholar 

  • Page, M. E., et al. (2002). Behavioral and neurochemical effects of 5-(4-[4-(5-Cyano-3-indolyl)-butyl-butyl]-1-piperazinyl)-benzofuran-2-carboxamide (EMD 68843): A combined selective inhibitor of serotonin reuptake and 5-hydroxytryptamine(1A) receptor partial agonist. The Journal of Pharmacology and Experimental Therapeutics, 302(3), 1220–1227.

    Article  Google Scholar 

  • Porsolt, R. D., Le Pichon, M., & Jalfre, M. (1977). Depression: A new animal model sensitive to antidepressant treatments. Nature, 266(5604), 730–732.

    Article  Google Scholar 

  • Reimherr, F. W., et al. (1988). Sertraline, a selective inhibitor of serotonin uptake, for the treatment of outpatients with major depressive disorder. Psychopharmacology Bulletin, 24(1), 200–205.

    Google Scholar 

  • Rickels, K., et al. (2009). Evidence for efficacy and tolerability of vilazodone in the treatment of major depressive disorder: A randomized, double-blind, placebo-controlled trial. The Journal of Clinical Psychiatry, 70(3), 326–333.

    Article  Google Scholar 

  • Russo, F., & Williamson, J. (2007). Interpreting causality in the health sciences. International Studies in the Philosophy of Science, 21(2), 157–170.

    Article  Google Scholar 

  • Russo, F., & Williamson, J. (2012). EnviroGenomarkers: The interplay between mechanisms and difference making in establishing causal claims. Medicine Studies, 3(4), 249–262.

    Article  Google Scholar 

  • Salmon, W. C. (2006). Four decades of scientific explanation (Édition: 1). University of Pittsburgh Press.

    Google Scholar 

  • Salomé, N., et al. (2006). Selective blockade of NK2 or NK3 receptors produces anxiolytic- and antidepressant-like effects in gerbils. Pharmacology, Biochemistry, and Behavior, 83(4), 533–539.

    Article  Google Scholar 

  • Seligman, M. E., & Maier, S. F. (1967). Failure to escape traumatic shock. Journal of Experimental Psychology, 74(1), 1–9.

    Article  Google Scholar 

  • Steel, D. (2008). Across the boundaries: Extrapolation in biology and social science. Oxford: Oxford University Press.

    Google Scholar 

  • Treit, D., et al. (2001). Systemic EMD 68843 injections reduce anxiety in the shock-probe, but not the plus-maze test. European Journal of Pharmacology, 414(2–3), 245–248.

    Article  Google Scholar 

  • van Riezen, H., Schnieden, H., & Wren, A. F. (1977). Olfactory bulb ablation in the rat: Behavioural changes and their reversal by antidepressant drugs. British Journal of Pharmacology, 60(4), 521–528.

    Article  Google Scholar 

  • Willner, P., Scheel-Krüger, J., & Belzung, C. (2013). The neurobiology of depression and antidepressant action. Neuroscience and Biobehavioral Reviews, 37(10 Pt 1), 2331–2371.

    Article  Google Scholar 

  • Wong, D. T., et al. (1974). A selective inhibitor of serotonin uptake: Lilly 110140, 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine. Life Sciences, 15(3), 471–479.

    Article  Google Scholar 

  • Wong, D. T., et al. (1975a). A new selective inhibitor for uptake of serotonin into synaptosomes of rat brain: 3-(p-trifluoromethylphenoxy). N-methyl-3-phenylpropylamine. The Journal of Pharmacology and Experimental Therapeutics, 193(3), 804–811.

    Google Scholar 

  • Wong, D. T., et al. (1975b). A new selective inhibitor for uptake of serotonin into synaptosomes of rat brain: 3-(p-trifluoromethylphenoxy). N-methyl-3-phenylpropylamine. The Journal of Pharmacology and Experimental Therapeutics, 193(3), 804–811.

    Google Scholar 

  • Wong, D. T., Perry, K. W., & Bymaster, F. P. (2005). Case history: The discovery of fluoxetine hydrochloride (Prozac). Nature Reviews Drug Discovery, 4(9), 764–774.

    Article  Google Scholar 

  • Worrall, J. (2010). Evidence: Philosophy of science meets medicine. Journal of Evaluation in Clinical Practice, 16(2), 356–362.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Belzung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belzung, C., Billette de Villemeur, E., Lemoine, M. (2020). Mechanistic vs Statistical Extrapolation in Preclinical Research in Psychiatry: Challenging the Received View. In: LaCaze, A., Osimani, B. (eds) Uncertainty in Pharmacology. Boston Studies in the Philosophy and History of Science, vol 338. Springer, Cham. https://doi.org/10.1007/978-3-030-29179-2_4

Download citation

Publish with us

Policies and ethics