Skip to main content

Receptors for Targeting Gastrointestinal Tract Cancer

  • Chapter
  • First Online:

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 39))

Abstract

Cancers of the gastrointestinal tract (GIT) are among the most prevalent and fatal cancers. Historically, surgical resection was the only effective treatment of operable GIT tumors. However, more than half of these patients present locally advanced, recurrent, or metastatic disease, necessitating development of alternate strategies for possible therapy. Cellular receptors are instrumental in controlling the basic traits of a cell. Binding of specific ligands to these receptors results in changes in gene expression and increase in cell metabolism, cell growth, or cell death. The therapeutic prospects of ligands for somatostatin receptors (SSTRs), c-Kit, and peroxisome proliferator-activated receptors (PPARs) along with receptor-mediated strategies have been discussed in this chapter. Ligands for these receptors include peptides, small molecules, and oligonucleotides that can be delivered using nanoparticulate delivery systems tailored for specific application. Some important drug candidates undergoing clinical trials have also been mentioned to convey the potential of these receptors as targets for GIT cancer therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CML:

Chronic myeloid leukemia

CXC:

C-X-C motif chemokine

DBD:

DNA-binding domain

DRIP:

vitamin D3 receptor-interacting protein

EGFR:

Epidermal growth factor receptor

GEP-NET:

Gastroenteropancreatic neuroendocrine tumors

GIST:

Gastrointestinal stromal tumors

GIT:

Gastrointestinal tract

LBD:

Ligand-binding domain

MAPK:

Mitogen-activated protein kinase

mTOR:

Mammalian target of rapamycin

NCoR:

Nuclear receptor corepressor

NF-κB:

Nuclear factor kappa light chain

NPs:

Nanoparticles

PDGFR:

Platelet-derived growth factor receptor

PGC-1:

PPARγ coactivator-1

PIP3:

Phosphatidylinositol 3,4,5 triphosphate

PL:

Phospholipase

PPAR:

Peroxisome proliferator-activated receptors

PRI:

Peptide receptor imaging

PRRT:

Peptide receptor radionuclide therapy

PTP:

Phosphotyrosine phosphatases

PTX:

Pertussis toxin

QDs:

Quantum dots

RTK:

Receptor tyrosine kinase

RXR:

Retinoid X receptor

SCF:

Stem cell factor

SFK:

Src family of tyrosine kinases

SH2:

Src homology 2

SHP:

Small heterodimer partner

SRIF:

Somatotropin release-inhibiting factor

SS:

Somatostatin

SSTR:

Somatostatin receptors

TLR:

Toll-like receptors

TMD:

Transmembrane domains

TRAP:

Thyroid hormone receptor-associated protein

TZD:

Thiazolidinedione

USFDA:

The food and drug administration

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

References

  1. WHO (2014) World cancer report.

    Google Scholar 

  2. Dallas NA, Fan F, Gray MJ, Van Buren G, Lim SJ, Xia L, et al. Functional significance of vascular endothelial growth factor receptors on gastrointestinal cancer cells. Cancer Metastasis Rev. 2007;26(3–4):433.

    Article  CAS  PubMed  Google Scholar 

  3. Atmaca A, Werner D, Pauligk C, Steinmetz K, Wirtz R, Altmannsberger H-M, et al. The prognostic impact of epidermal growth factor receptor in patients with metastatic gastric cancer. BMC Cancer. 2012;12(1):524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ogura M, Takeuchi H, Kawakubo H, Nishi T, Fukuda K, Nakamura R, et al. Clinical significance of CXCL-8/CXCR-2 network in esophageal squamous cell carcinoma. Surgery. 2013;154(3):512–20.

    Article  PubMed  Google Scholar 

  5. Itatani Y, Kawada K, Inamoto S, Yamamoto T, Ogawa R, Taketo M, et al. The role of chemokines in promoting colorectal cancer invasion/metastasis. Int J Mol Sci. 2016;17(5):643.

    Article  PubMed Central  CAS  Google Scholar 

  6. Basith S, Manavalan B, Yoo TH, Kim SG, Choi S. Roles of toll-like receptors in cancer: a double-edged sword for defense and offense. Arch Pharm Res. 2012;35(8):1297–316.

    Article  CAS  PubMed  Google Scholar 

  7. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science. 1973;179(4068):77–9.

    Article  CAS  PubMed  Google Scholar 

  8. Pradayrol L, Chayvialle J, Carlquist M, Mutt V. Isolation of a porcine intestinal peptide with C-terminal somatostatin. Biochem Biophys Res Commun. 1978;85(2):701–8.

    Article  CAS  PubMed  Google Scholar 

  9. Patel Y, Greenwood M, Kent G, Panetta R, Srikant C. Multiple gene transcripts of the somatostatin receptor SSTR2: tissue-selective distribution and cAMP regulation. Biochem Biophys Res Commun. 1993;192(1):288–94.

    Article  CAS  PubMed  Google Scholar 

  10. Reubi J-C. Somatostatin receptors in the gastrointestinal tract in health and disease. Yale J Biol Med. 1992;65(5):493.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shulkes A. 9 Somatostatin: physiology and clinical applications. Baillieres Clin Endocrinol Metab. 1994;8(1):215–36.

    Article  CAS  PubMed  Google Scholar 

  12. Liapakis G, Fitzpatrick D, Hoeger C, Rivier J, Vandlen R, Reisine T. Identification of ligand binding determinants in the somatostatin receptor subtypes 1 and 2. J Biol Chem. 1996;271(34):20331–9.

    Article  CAS  PubMed  Google Scholar 

  13. NEHRUNG RB, MEYERHOF W, RICHTER D. Aspartic acid residue 124 in the third transmembrane domain of the somatostatin receptor subtype 3 is essential for somatostatin-14 binding. DNA Cell Biol. 1995;14(11):939–44.

    Article  Google Scholar 

  14. Greenwood MT, Hukovic N, Kumar U, Panetta R, Hjorth SA, Srikant CB, et al. Ligand binding pocket of the human somatostatin receptor 5: mutational analysis of the extracellular domains. Mol Pharmacol. 1997;52(5):807–14.

    Article  CAS  PubMed  Google Scholar 

  15. Bass RT, Buckwalter BL, Patel BP, Pausch MH, Price LA, Strnad J, et al. Identification and characterization of novel somatostatin antagonists. Mol Pharmacol. 1996;50(4):709–15.

    CAS  PubMed  Google Scholar 

  16. Duluc C, Moatassim-Billah S, Chalabi-Dchar M, Perraud A, Samain R, Breibach F, et al. Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance. EMBO Mol Med. 2015;7(6):735–53. https://doi.org/10.15252/emmm.201404346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Florio T, Yao H, Carey KD, Dillon TJ, Stork PJ. Somatostatin activation of mitogen-activated protein kinase via somatostatin receptor 1 (SSTR1). Mol Endocrinol. 1999;13(1):24–37.

    Article  CAS  PubMed  Google Scholar 

  18. Pagès P, Benali N, Saint-Laurent N, Estève J-P, Schally AV, Tkaczuk J, et al. sst2 somatostatin receptor mediates cell cycle arrest and induction of p27 (Kip1). Evidence for the role of SHP-1. J Biol Chem. 1999;274(21):15186–93.

    Article  PubMed  Google Scholar 

  19. Theodoropoulou M, Zhang J, Laupheimer S, Paez-Pereda M, Erneux C, Florio T, et al. Octreotide, a somatostatin analogue, mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1 expression. Cancer Res. 2006;66(3):1576–82.

    Article  CAS  PubMed  Google Scholar 

  20. Hukovic N, Rocheville M, Kumar U, Sasi R, Khare S, Patel YC. Agonist-dependent up-regulation of human somatostatin receptor type 1 requires molecular signals in the cytoplasmic C-tail. J Biol Chem. 1999;274(35):24550–8.

    Article  CAS  PubMed  Google Scholar 

  21. Alderton F, Humphrey PP, Sellers LA. High-intensity p38 kinase activity is critical for p21 cip1 induction and the antiproliferative function of Gi protein-coupled receptors. Mol Pharmacol. 2001;59(5):1119–28.

    Article  CAS  PubMed  Google Scholar 

  22. Tulipano G, Stumm R, Pfeiffer M, Kreienkamp H-J, Höllt V, Schulz S. Differential β-arrestin trafficking and endosomal sorting of somatostatin receptor subtypes. J Biol Chem. 2004;279(20):21374–82.

    Article  CAS  PubMed  Google Scholar 

  23. Smalley K, Koenig J, Feniuk W, Humphrey P. Ligand internalization and recycling by human recombinant somatostatin type 4 (h sst4) receptors expressed in CHO-K1 cells. Br J Pharmacol. 2001;132(5):1102–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bethge N, Diel F, Rösick M, Holz J. Somatostatin half-life: a case report in one healthy volunteer and a three month follow-up. Horm Metab Res. 1981;13(12):709–10.

    Article  CAS  PubMed  Google Scholar 

  25. Gazal S, Gelerman G, Ziv O, Karpov O, Litman P, Bracha M, et al. Human somatostatin receptor specificity of backbone-cyclic analogues containing novel sulfur building units. J Med Chem. 2002;45(8):1665–71.

    Article  CAS  PubMed  Google Scholar 

  26. Rohrer SP, Schaeffer JM. Identification and characterization of subtype selective somatostatin receptor agonists. J Physiol Paris. 2000;94(3–4):211–5.

    Article  CAS  PubMed  Google Scholar 

  27. Hirschmann R, Nicolaou K, Pietranico S, Salvino J, Leahy EM, Sprengeler PA, et al. Nonpeptidal peptidomimetics with beta-D-glucose scaffolding. A partial somatostatin agonist bearing a close structural relationship to a potent, selective substance P antagonist. J Am Chem Soc. 1992;114(23):9217–8.

    Article  CAS  Google Scholar 

  28. Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C. Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov. 2003;2(12):999.

    Article  CAS  PubMed  Google Scholar 

  29. Hocart SJ, Jain R, Murphy WA, Taylor JE, Coy DH. Highly potent cyclic disulfide antagonists of somatostatin. J Med Chem. 1999;42(11):1863–71.

    Article  CAS  PubMed  Google Scholar 

  30. Reubi JC, Schaer J-C, Wenger S, Hoeger C, Erchegyi J, Waser B, et al. SST3-selective potent peptidic somatostatin receptor antagonists. Proc Natl Acad Sci. 2000;97(25):13973–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoyer D, Dixon K, Gentsch C, Vassout A, Enz A, Jaton A, et al. NVP-SRA880, a somatostatin sst1 receptor antagonist promotes social interactions, reduces aggressive behaviour and stimulates learning. Pharmacologist. 2002;44(2 Suppl 1):A254.

    Google Scholar 

  32. Poitout L, Roubert P, Contour-Galcéra M-O, Moinet C, Lannoy J, Pommier J, et al. Identification of potent non-peptide somatostatin antagonists with sst3 selectivity. J Med Chem. 2001;44(18):2990–3000.

    Article  CAS  PubMed  Google Scholar 

  33. Ginj M, Zhang H, Waser B, Cescato R, Wild D, Wang X, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci. 2006;103(44):16436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stefan Schulz CB, Castano Justo, Culler M, Epelbaum J, Hofland L, Hoyer D, Reubi J-C, Schmid H, Schonbrunn A, Feniuk W, Harmar A, Humphrey PPA, Meyerhof W, O’Carroll A-M, Patel YC, Reisine T, Schindler M, Taylor JE, Vezzani A, Hills R (2018) Somatostatin receptors [cited 2018]. Available from: http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=61.

  35. Herrera-Martínez AD, Gahete MD, Pedraza-Arevalo S, Sánchez-Sánchez R, Ortega-Salas R, Serrano-Blanch R, et al. Clinical and functional implication of the components of somatostatin system in gastroenteropancreatic neuroendocrine tumors. Endocrine. 2018;59(2):426–37.

    Article  PubMed  CAS  Google Scholar 

  36. Janson EMT, Ahlström H, Andersson T, Öberg KE. Octreotide and interferon alfa: a new combination for the treatment of malignant carcinoid tumours. Eur J Cancer. 1992;28(10):1647–50.

    Article  Google Scholar 

  37. Pavel ME, Hainsworth JD, Baudin E, Peeters M, Hörsch D, Winkler RE, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011;378(9808):2005–12.

    Article  CAS  PubMed  Google Scholar 

  38. Krenning E, Kwekkeboom DJ, Bakker W, Breeman W, Kooij P, Oei H, et al. Somatostatin receptor scintigraphy with [111 In-DTPA-D-Phe 1]-and [123 I-Tyr 3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20(8):716–31.

    Article  CAS  PubMed  Google Scholar 

  39. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nicolas GP, Mansi R, McDougall L, Kaufmann J, Bouterfa H, Wild D, et al. Biodistribution, pharmacokinetics, and dosimetry of 177Lu-, 90Y-, and 111In-labeled somatostatin receptor antagonist OPS201 in comparison to the agonist 177Lu-DOTATATE: the mass effect. J Nucl Med. 2017;58(9):1435–41.

    Article  CAS  PubMed  Google Scholar 

  41. Nicolas GP, Schreiter N, Kaul F, Uiters J, Bouterfa H, Kaufmann J, et al. Comparison of 68Ga-OPS202 (68Ga-NODAGA-JR11) and 68Ga-DOTATOC (68Ga-Edotreotide) PET/CT in patients with gastroenteropancreatic neuroendocrine tumors: evaluation of sensitivity in a prospective phase II imaging study. J Nucl Med. 2017;59(6):915–21.

    Article  PubMed  CAS  Google Scholar 

  42. Sreenivasan VK, Kim EJ, Goodchild AK, Connor M, Zvyagin AV. Targeting somatostatin receptors using in situ-bioconjugated fluorescent nanoparticles. Nanomedicine. 2012;7(10):1551–60.

    Article  CAS  PubMed  Google Scholar 

  43. Killingsworth MC, Lai K, Wu X, Yong JL, Lee CS. Quantum dot immunocytochemical localization of somatostatin in somatostatinoma by widefield epifluorescence, super-resolution light, and immunoelectron microscopy. J Histochem Cytochem. 2012;60(11):832–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Surujpaul PP, Gutierrez-Wing C, Ocampo-García B, Ramirez FM, de Murphy CA, Pedraza-Lopez M, et al. Gold nanoparticles conjugated to [Tyr3] octreotide peptide. Biophys Chem. 2008;138(3):83–90.

    Article  CAS  PubMed  Google Scholar 

  45. Dubey N, Varshney R, Shukla J, Ganeshpurkar A, Hazari PP, Bandopadhaya GP, et al. Synthesis and evaluation of biodegradable PCL/PEG nanoparticles for neuroendocrine tumor targeted delivery of somatostatin analog. Drug Deliv. 2012;19(3):132–42.

    Article  CAS  PubMed  Google Scholar 

  46. Abdellatif AA, El Rasoul SA, Osman S. Gold nanoparticles decorated with octreotide for somatostatin receptors targeting. J Pharm Sci Res. 2015;7(1):14.

    Google Scholar 

  47. López-Tobar E, Hernández B, Gómez J, Chenal A, Garcia-Ramos JV, Ghomi M, et al. Anchoring sites of fibrillogenic peptide hormone somatostatin-14 on plasmonic nanoparticles. J Phys Chem C. 2015;119(15):8273–9.

    Article  CAS  Google Scholar 

  48. Besmer P, Murphy JE, George PC, Qiu F, Bergold PJ, Lederman L, et al. A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature. 1986;320(6061):415.

    Article  CAS  PubMed  Google Scholar 

  49. Yarden Y, Kuang W-J, Yang-Feng T, Coussens L, Munemitsu S, Dull T, et al. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. 1987;6(11):3341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tabone S, Théou N, Wozniak A, Saffroy R, Deville L, Julié C, et al. KIT overexpression and amplification in gastrointestinal stromal tumors (GISTs). Biochim Biophys Acta Mol Bas Dis. 2005;1741(1–2):165–72.

    Article  CAS  Google Scholar 

  51. Zsebo KM, Williams DA, Geissler EN, Broudy VC, Martin FH, Atkins HL, et al. Stem cell factor is encoded at the SI locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell. 1990;63(1):213–24.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Z, Zhang R, Joachimiak A, Schlessinger J, Kong X-P. Crystal structure of human stem cell factor: implication for stem cell factor receptor dimerization and activation. Proc Natl Acad Sci. 2000;97(14):7732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yuzawa S, Opatowsky Y, Zhang Z, Mandiyan V, Lax I, Schlessinger J. Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell. 2007;130(2):323–34.

    Article  CAS  PubMed  Google Scholar 

  54. Zhu W-M, Dong W-F, Minden M. Alternate splicing creates two forms of the human kit protein. Leuk Lymphoma. 1994;12(5–6):441–7.

    Article  CAS  PubMed  Google Scholar 

  55. Mol CD, Lim KB, Sridhar V, Zou H, Chien EY, Sang B-C, et al. Structure of a c-kit product complex reveals the basis for kinase transactivation. J Biol Chem. 2003;278(34):31461–4.

    Article  CAS  PubMed  Google Scholar 

  56. Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML, Scheibe DN, et al. Structural basis for the autoinhibition and STI-571 inhibition of c-kit tyrosine kinase. J Biol Chem. 2004;279(30):31655–63.

    Article  CAS  PubMed  Google Scholar 

  57. Klippel A, Escobedo JA, Hirano M, Williams LT. The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol Cell Biol. 1994;14(4):2675–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91(2):231–41.

    Article  CAS  PubMed  Google Scholar 

  59. Lennartsson J, Blume-Jensen P, Hermanson M, Pontén E, Carlberg M, RoÈnnstrand L. Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction. Oncogene. 1999;18(40):5546.

    Article  CAS  PubMed  Google Scholar 

  60. Shivakrupa R, Linnekin D. Lyn contributes to regulation of multiple Kit-dependent signaling pathways in murine bone marrow mast cells. Cell Signal. 2005;17(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  61. Sherry M, LINNEKIN D. Lyn is activated during late G1 of stem-cell-factor-induced cell cycle progression in haemopoietic cells. Biochem J. 1999;342(1):163–70.

    Article  Google Scholar 

  62. Simon C, Dondi E, Chaix A, de Sepulveda P, Kubiseski TJ, Varin-Blank N, et al. Lnk adaptor protein down-regulates specific Kit-induced signaling pathways in primary mast cells. Blood. 2008;112(10):4039–47.

    Article  CAS  PubMed  Google Scholar 

  63. AOCS (2018) Lipid library [cited 2018]. Available from: http://lipidlibrary.aocs.org/Biochemistry/content.cfm?ItemNumber=39190.

  64. Trieselmann N, Soboloff J, Berger S. Mast cells stimulated by membrane-bound, but not soluble, steel factor are dependent on phospholipase C activation. Cell Mol Life Sci. 2003;60(4):759–66.

    Article  CAS  PubMed  Google Scholar 

  65. Koike T, Hirai K, Morita Y, Nozawa Y. Stem cell factor-induced signal transduction in rat mast cells. Activation of phospholipase D but not phosphoinositide-specific phospholipase C in c-kit receptor stimulation. J Immunol. 1993;151(1):359–66.

    CAS  PubMed  Google Scholar 

  66. Liu H, Chen X, Focia PJ, He X. Structural basis for stem cell factor–KIT signaling and activation of class III receptor tyrosine kinases. EMBO J. 2007;26(3):891–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. PHARMACOLOGY Gt. Type III RTKs: PDGFR, CSFR, Kit, FLT3 receptor family: KIT proto-oncogene receptor tyrosine kinase [cited 2018]. Available from: http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1805.

  68. Rankin S, Reszka AP, Huppert J, Zloh M, Parkinson GN, Todd AK, et al. Putative DNA quadruplex formation within the human c-kit oncogene. J Am Chem Soc. 2005;127(30):10584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gunaratnam M, Swank S, Haider SM, Galesa K, Reszka AP, Beltran M, et al. Targeting human gastrointestinal stromal tumor cells with a quadruplex-binding small molecule. J Med Chem. 2009;52(12):3774–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McLuckie KI, Waller ZA, Sanders DA, Alves D, Rodriguez R, Dash J, et al. G-quadruplex-binding benzo [a] phenoxazines down-regulate c-KIT expression in human gastric carcinoma cells. J Am Chem Soc. 2011;133(8):2658–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bejugam M, Gunaratnam M, Müller S, Sanders DA, Sewitz S, Fletcher JA, et al. Targeting the c-Kit promoter G-quadruplexes with 6-substituted indenoisoquinolines. ACS Med Chem Lett. 2010;1(7):306–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang X, Zhou C-X, Yan J-W, Hou J-Q, Chen S-B, Ou T-M, et al. Synthesis and evaluation of quinazolone derivatives as a new class of c-KIT G-quadruplex binding ligands. ACS Med Chem Lett. 2013;4(10):909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kimura S, Egashira K, Nakano K, Iwata E, Miyagawa M, Tsujimoto H, et al. Local delivery of imatinib mesylate (STI571)-incorporated nanoparticle ex vivo suppresses vein graft neointima formation. Circulation. 2008;118(14 suppl 1):S65–70.

    Article  CAS  PubMed  Google Scholar 

  74. Marslin G, Revina AM, Khandelwal VKM, Balakumar K, Prakash J, Franklin G, et al. Delivery as nanoparticles reduces imatinib mesylate-induced cardiotoxicity and improves anticancer activity. Int J Nanomedicine. 2015;10:3163.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fan Y, Du W, He B, Fu F, Yuan L, Wu H, et al. The reduction of tumor interstitial fluid pressure by liposomal imatinib and its effect on combination therapy with liposomal doxorubicin. Biomaterials. 2013;34(9):2277–88.

    Article  CAS  PubMed  Google Scholar 

  76. Saber MM, Bahrainian S, Dinarvand R, Atyabi F. Targeted drug delivery of Sunitinib Malate to tumor blood vessels by cRGD-chitosan-gold nanoparticles. Int J Pharm. 2017;517(1–2):269–78.

    Article  CAS  PubMed  Google Scholar 

  77. Kim WK, Park M, Kim Y-K, You KT, Yang H-K, Lee JM, et al. MicroRNA-494 downregulates KIT and inhibits gastrointestinal stromal tumor cell proliferation. Clin Cancer Res. 2011;17:7584.

    Article  CAS  PubMed  Google Scholar 

  78. Durso M, Gaglione M, Piras L, Mercurio ME, Terreri S, Olivieri M, et al. Chemical modifications in the seed region of miRNAs 221/222 increase the silencing performances in gastrointestinal stromal tumor cells. Eur J Med Chem. 2016;111:15–25.

    Article  CAS  PubMed  Google Scholar 

  79. Tu L, Wang M, Zhao W-Y, Zhang Z-Z, Tang D-F, Zhang Y-Q, et al. miRNA-218-loaded carboxymethyl chitosan-Tocopherol nanoparticle to suppress the proliferation of gastrointestinal stromal tumor growth. Mater Sci Eng C. 2017;72:177–84.

    Article  CAS  Google Scholar 

  80. Moreno M, Lombardi A, Silvestri E, Senese R, Cioffi F, Goglia F, et al. PPARs: nuclear receptors controlled by, and controlling, nutrient handling through nuclear and cytosolic signaling. PPAR Res. 2010;2010:1.

    Article  CAS  Google Scholar 

  81. Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011;2(4):236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs: from orphan receptors to drug discovery. J Med Chem. 2000;43(4):527–50.

    Article  CAS  PubMed  Google Scholar 

  83. Luisi BF, Xu W, Otwinowski Z, Freedman L, Yamamoto K, Sigler P. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature. 1991;352(6335):497.

    Article  CAS  PubMed  Google Scholar 

  84. Schwabe JW, Chapman L, Finch JT, Rhodes D. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. Cell. 1993;75(3):567–78.

    Article  CAS  PubMed  Google Scholar 

  85. Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988;240(4854):889–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tsai M-J, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem. 1994;63(1):451–86.

    Article  CAS  PubMed  Google Scholar 

  87. Allan GF, Leng X, Tsai S, Weigel N, Edwards D, Tsai M-J, et al. Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J Biol Chem. 1992;267(27):19513–20.

    CAS  PubMed  Google Scholar 

  88. Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res. 1996;37(5):907–25.

    CAS  PubMed  Google Scholar 

  89. Wright MB, Bortolini M, Tadayyon M, Bopst M. Minireview: challenges and opportunities in development of PPAR agonists. Mol Endocrinol. 2014;28(11):1756–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Gaw A, Packard C, Shepherd J. Fibrates. In: Principles and treatment of lipoprotein disorders. Berlin, Heidelberg: Springer; 1994. p. 325–48.

    Chapter  Google Scholar 

  91. Hawke RL, Chapman JM, Winegar DA, Salisbury JA, Welch RM, Brown A, et al. Potent hypocholesterolemic activity of novel ureido phenoxyisobutyrates correlates with their intrinsic fibrate potency and not with their ACAT inhibitory activity. J Lipid Res. 1997;38(6):1189–203.

    CAS  PubMed  Google Scholar 

  92. Brown PJ, Hurley KP, Stuart LW, Willson TM. Generation of secondary alkyl amines on solid support by borane reduction: application to the parallel synthesis of PPAR ligands. Synthesis. 1997;1997(07):778–82.

    Article  Google Scholar 

  93. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J Biol Chem. 1995;270(22):12953–6.

    Article  CAS  PubMed  Google Scholar 

  94. Hulin B, McCarthy PA, Gibbs EM. The glitazone family of antidiabetic agents. Curr Pharm Des. 1996;2(1):85–102.

    CAS  Google Scholar 

  95. Wang W, Wang R, Zhang Z, Li D, Yu Y. Enhanced PPAR-γ expression may correlate with the development of Barrett’s esophagus and esophageal adenocarcinoma. Oncol Res Featur Preclin Clin Cancer Ther. 2011;19(3–4):141–7.

    Google Scholar 

  96. Sato H, Ishihara S, Kawashima K, Moriyama N, Suetsugu H, Kazumori H, et al. Expression of peroxisome proliferator-activated receptor (PPAR) γ in gastric cancer and inhibitory effects of PPARγ agonists. Br J Cancer. 2000;83(10):1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dai Y, Wang W-H. Peroxisome proliferator-activated receptor γ and colorectal cancer. World J Gastrointest Oncol. 2010;2(3):159.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ban JO, Kwak DH, Oh JH, Park E-J, Cho M-C, Song HS, et al. Suppression of NF-κB and GSK-3β is involved in colon cancer cell growth inhibition by the PPAR agonist troglitazone. Chem Biol Interact. 2010;188(1):75–85.

    Article  CAS  PubMed  Google Scholar 

  99. Tsukahara T, Hanazawa S, Kobayashi T, Iwamoto Y, Murakami-Murofushi K. Cyclic phosphatidic acid decreases proliferation and survival of colon cancer cells by inhibiting peroxisome proliferator-activated receptor γ. Prostaglandins Other Lipid Mediat. 2010;93(3–4):126–33.

    Article  CAS  PubMed  Google Scholar 

  100. Röhrl C, Kaindl U, Koneczny I, Hudec X, Baron DM, König JS, et al. Peroxisome-proliferator-activated receptors γ and β/δ mediate vascular endothelial growth factor production in colorectal tumor cells. J Cancer Res Clin Oncol. 2011;137(1):29–39.

    Article  PubMed  CAS  Google Scholar 

  101. Wang D, Ning W, Xie D, Guo L, DuBois RN. Peroxisome proliferator-activated receptor δ confers resistance to peroxisome proliferator-activated receptor γ-induced apoptosis in colorectal cancer cells. Oncogene. 2012;31(8):1013.

    Article  CAS  PubMed  Google Scholar 

  102. Koga H, Selvendiran K, Sivakumar R, Yoshida T, Torimura T, Ueno T, et al. PPARγ potentiates anticancer effects of gemcitabine on human pancreatic cancer cells. Int J Oncol. 2012;40(3):679–85.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ratnesh Jain or Prajakta Dandekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pant, T., Aware, N., Devarajan, P.V., Jain, R., Dandekar, P. (2019). Receptors for Targeting Gastrointestinal Tract Cancer. In: Devarajan, P., Dandekar, P., D'Souza, A. (eds) Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis. AAPS Advances in the Pharmaceutical Sciences Series, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-29168-6_5

Download citation

Publish with us

Policies and ethics