Skip to main content

Principal Components, Classical Multidimensional Scaling, and Factor Analysis

  • Chapter
  • First Online:
  • 2966 Accesses

Part of the book series: Springer Texts in Statistics ((STS))

Abstract

This chapter introduces the theory and application of principal components, classical multidimensional scaling, and factor analysis. Principal components seek to effectively summarize high dimensional data as lower dimensional scores. Multidimensional scaling gives a visual representation of points when all we know about the points are the distances separating them. Classical multidimensional scaling is seen to be an application of principal components when the distances are standard Euclidean distances. Principal components and factor analysis are often used for similar purposes but their theoretical background is quite different.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Christensen, R. (1997). Log-linear models and logistic regression (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Christensen, R. (2011). Plane answers to complex questions: The theory of linear models (4th ed.). New York: Springer.

    Book  Google Scholar 

  • Christensen, R. (2014). Comment. The American Statistician, 68, 13–17.

    Article  MathSciNet  Google Scholar 

  • Dixon, W. J., & Massey Jr., F. J. (1983). Introduction to statistical analysis. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Geweke, J. F., & Singleton, K. J. (1980). Interpreting the likelihood ratio statistic in factor models when sample size is small. Journal of the American Statistical Association, 75, 133–137.

    Article  Google Scholar 

  • Gnanadesikan, R. (1977). Methods for statistical data analysis of multivariate observations. New York: Wiley.

    MATH  Google Scholar 

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417-441, 498–520.

    Article  Google Scholar 

  • Hyvärinen, A., Karhunen, J. & Oja, E. (2001). Independent component analysis. New York: Wiley.

    Book  Google Scholar 

  • Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed.). Englewood Cliffs: Prentice–Hall.

    MATH  Google Scholar 

  • Jolicoeur, P., & Mosimann, J. E. (1960). Size and shape variation on the painted turtle: A principal component analysis. Growth, 24, 339–354.

    Google Scholar 

  • Jolliffe, I. T. (1986). Principal component analysis. New York: Springer.

    Book  Google Scholar 

  • Jöreskog, K. G. (1975). Factor analysis by least squares and maximum likelihood. In K. Enslein, A. Ralston, & H. S. Wilf (Eds.) Statistical methods for digital computers. New York: Wiley.

    Google Scholar 

  • Lawley, D. N., & Maxwell, A. E. (1971). Factor analysis as a statistical methodology (2nd ed.). New York: American Elsevier.

    MATH  Google Scholar 

  • Li, G. & Chen, Z. (1985). Projection pursuit approach to robust dispersion matrices and principal components: Primary theory and Monte Carlo. Journal of the American Statistical Association, 80, 759–766.

    Article  Google Scholar 

  • Morrison, D. F. (2004). Multivariate statistical methods (4th ed.). Pacific Grove, CA: Duxbury Press.

    Google Scholar 

  • Okamoto, M. & Kanazawa, M. (1968). Minimization of eigenvalues of a matrix and optimality of principal components. Annals of Mathematical Statistics, 39, 859–863.

    Article  MathSciNet  Google Scholar 

  • Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 6(2), 559–572.

    MATH  Google Scholar 

  • Rao, C. R. (1973). Linear statistical inference and its applications (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Schervish, M. J. (1986). A predictive derivation of principal components. Technical Report 378, Department of Statistics, Carnegie-Mellon University, Pittsburgh, PA.

    Google Scholar 

  • Seber, G. A. F. (1984). Multivariate observations. New York: Wiley.

    Book  Google Scholar 

  • Thompson, G. H. (1934). Hotelling’s method modified to give Spearman’s g. Journal of Educational Psychology, 25, 366–374.

    Article  Google Scholar 

  • Thurstone, L. L. (1931). Multiple factor analysis. Psychological Review, 38, 406–427.

    Article  Google Scholar 

  • Williams, J. S. (1979). A synthetic basis for comprehensive factor-analysis theory. Biometrics, 35, 719–733.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Christensen, R. (2019). Principal Components, Classical Multidimensional Scaling, and Factor Analysis. In: Advanced Linear Modeling. Springer Texts in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-29164-8_14

Download citation

Publish with us

Policies and ethics