Skip to main content

Advancing Assembly Through Human-Robot Collaboration: Framework and Implementation

  • Chapter
  • First Online:
Book cover Reinventing Mechatronics

Abstract

The chapter presents a framework for establishing human-robot collaborative assembly in industrial environments. To achieve this, the chapter first reviews the subject state of the art and then addresses the challenges facing researchers. The chapter provides two examples of human-robot collaboration. The first is a scenario where a human is remotely connected to an industrial robot, and the second is where a human collaborates locally with a robot on a shop floor. The chapter focuses on the human-robot collaborative assembly of mechanical components, both on-site and remotely. It also addresses sustainability issues from the societal perspective. The main research objective is to develop safe and operator-friendly solutions for human-robot collaborative assembly within a dynamic factory environment. The presented framework is evaluated using defined scenarios of distant and local assembly operations when the experimental results show that the approach is capable of effectively performing human-robot collaborative assembly tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. US Department of Commerce @ ecos.com/assets/uploads/2013/10/EFP-Sustainable-Manufacturing-Praciticesdited2016.pdf.

    Google Scholar 

  2. OECD. (2011). OECD sustainable manufacturing tookit—Seven steps to environmental excellence @ www.oecd.org/innovation/green/toolkit/48704993.pdf. Accessed May 20, 2019.

  3. Wang, L., Mohammed, A., & Onori, M. (2014). Remote robotic assembly guided by 3D models linking to a real robot. CIRP Annals—Manufacturing Technology, 63(1), 1–4.

    Article  Google Scholar 

  4. Mohammed, A., Schmidt, B., & Wang, L. (2016). Active collision avoidance for human–robot collaboration driven by vision sensors. International Journal of Computer Integrated Manufacturing, 1–11.

    Google Scholar 

  5. Holm, M., Givehchi, M., Mohammed, A., & Wang, L. (2012). Web based monitoring and control of distant robotic operations. In ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing (pp. 605–612).

    Google Scholar 

  6. Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A model for types and levels of human interaction with automation. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 30(3), 286–297.

    Article  Google Scholar 

  7. Blech, J. O., Spichkova, M., Peake, I., & Schmidt, H. (2014). Cyber-virtual systems: Simulation, validation & visualization. In 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE) (pp. 1–8).

    Google Scholar 

  8. Wang, X. G., Moallem, M., & Patel, R. V. (2003). An internet-based distributed multiple-telerobot system. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 33(5), 627–633.

    Article  Google Scholar 

  9. Junior, J. M., Junior, L. C., & Caurin, G. A. (2008). Scara3D: 3-Dimensional HRI integrated to a distributed control architecture for remote and cooperative actuation. In Proceedings of 2008 ACM Symposium Applied Computing (pp. 1597–1601).

    Google Scholar 

  10. Vartiainen, E., Domova, V., & Englund, M. (2015). Expert on wheels: An approach to remote collaboration. In HAI 2015 Proceedings of the 3rd International Conference on Human-Agent Interaction (pp. 49–54).

    Google Scholar 

  11. Zhong, H., Wachs, J. P., & Nof, S. Y. (2013). HUB-CI model for collaborative telerobotics in manufacturing. IFAC Proceedings, 46(7), 63–68.

    Article  Google Scholar 

  12. Itoh, T., Kosuge, K., & Fukuda, T. (2000). Human-machine cooperative telemanipulation with motion and force scaling using task-oriented virtual tool dynamics. IEEE Transactions on Robotics and Automation, 16(5), 505–516.

    Article  Google Scholar 

  13. Charles, S., Das, H., Ohm, T., Boswell, C., Rodriguez, G., Steele, R., & Istrate, D. (1997). Dexterity-enhanced telerobotic microsurgery. In Proceedings of the 8th International Conference on Advanced Robotics ICAR’97 (pp. 5–10).

    Google Scholar 

  14. Peake, I., Blech, J. O., Fernando, L., Schmidt, H., Sreenivasamurthy, R., & Sudarsan, S. D. (2015). Visualization facilities for distributed and remote industrial automation: VxLab. In Proceedings of the IEEE International Conference on Emerging Technologies & Factory Automation (pp. 1–4).

    Google Scholar 

  15. Ashby, J. E. (2008). The effectiveness of collaborative technologies in remote lab delivery systems. In Proceedings of the 38th Frontiers of Education Conference (pp. 7–12).

    Google Scholar 

  16. Karabegovic, I., Vojic, S., & Dolecek, V. (2006). 3D vision in industrial robot working process. In 12th International Power Electronics and Motion Control Conference (pp. 1223–1226).

    Google Scholar 

  17. Esteban, C. H., & Schmitt, F. (2004). Silhouette and stereo fusion for 3D object modeling. Computer Vision and Image Understanding, 96(3), 367–392.

    Article  Google Scholar 

  18. Monje, C. A., Pierro, P., & Balaguer, C. (2011). A new approach on human–robot collaboration with humanoid robot RH-2. Robotica, 29(6), 949–957.

    Article  Google Scholar 

  19. Takata, S., & Hirano, T. (2011). Human and robot allocation method for hybrid assembly systems. CIRP Annals—Manufacturing Technology, 60(1), 9–12.

    Article  Google Scholar 

  20. Chen, F., Sekiyama, K., Huang, J., Sun, B., Sasaki, H., & Fukuda, T. (2011). An assembly strategy scheduling method for human and robot coordinated cell manufacturing. International Journal of Intelligent Computing and Cybernetics, 487–510.

    Google Scholar 

  21. Krüger, J., Lien, T. K., & Verl, A. (2009). Cooperation of human and machines in assembly lines. CIRP Annals—Manufacturing Technology, 58(2), 628–646.

    Article  Google Scholar 

  22. Arai, T., Kato, R., & Fujita, M. (2010). Assessment of operator stress induced by robot collaboration in assembly. CIRP Annals—Manufacturing Technology, 59(1), 5–8.

    Article  Google Scholar 

  23. Kuli, D., & Croft, E. A. (2007). Affective state estimation for human–robot interaction. IEEE Transactions on Robotics, 23(5), 991–1000.

    Article  Google Scholar 

  24. Charalambous, G., Fletcher, S., & Webb, P. (2016). The development of a scale to evaluate trust in industrial human-robot collaboration. International Journal of Social Robotics, 8(2), 193–209.

    Article  Google Scholar 

  25. Charalambous, G., Fletcher, S., & Webb, P. (2016). Development of a human factors roadmap for the successful implementation of industrial human-robot collaboration. In Proceedings of the AHFE 2016 International Conference on Human Aspects of Advanced Manufacturing (pp. 195–206).

    Google Scholar 

  26. Ore, F., Vemula, B. R., Hanson, L., & Wiktorsson, M. (2016). Human–industrial robot collaboration: Application of simulation software for workstation optimisation. Procedia CIRP, 44, 181–186.

    Article  Google Scholar 

  27. Charalambous, G., Fletcher, S., & Webb, P. (2015). Identifying the key organisational human factors for introducing human-robot collaboration in industry: an exploratory study. The International Journal of Advanced Manufacturing Technology, 81(9–12), 2143–2155.

    Article  Google Scholar 

  28. Cherubini, A., Passama, R., Fraisse, P., & Crosnier, A. (2015). A unified multimodal control framework for human-robot interaction. Robtics & Autonomous Systems, 70, 106–115.

    Article  Google Scholar 

  29. Ding, H., Schipper, M., & Matthias, B. (2013). Collaborative behavior design of industrial robots for multiple human-robot collaboration. In IEEE 44th International Symposium on Robotics (ISR 2013) (Vol. 49, pp. 1–6).

    Google Scholar 

  30. Geravand, M., Flacco, F., & De Luca, A. (2013). Human-robot physical interaction and collaboration using an industrial robot with a closed control architecture. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 4000–4007).

    Google Scholar 

  31. Song, S.-W., Lee, S.-D., & Song, J.-B. (2015). 5 DOF industrial robot arm for safe human-robot collaboration. In 8th International Conference on Intelligent Robotics & Applications (ICIRA 2015) (pp. 121–129).

    Google Scholar 

  32. Michalos, G., Karagiannis, P., Makris, S., Tokçalar, Ö., & Chryssolouris, G. (2016). Augmented Reality (AR) applications for supporting human-robot interactive cooperation. Procedia CIRP, 41, 370–375.

    Article  Google Scholar 

  33. Krüger, J., Nickolay, B., Heyer, P., & Seliger, G. (2005). Image based 3D surveillance for flexible man-robot-cooperation. CIRP Annals—Manufacturing Technology, 54(1), 19–22.

    Article  Google Scholar 

  34. Corrales, J. A., Candelas, F. A., & Torres, F. (2011). Safe human-robot interaction based on dynamic sphere-swept line bounding volumes. Robotics & Computer Integrated Manufacturing, 27(1), 177–185.

    Article  Google Scholar 

  35. Bi, Z. M., & Wang, L. (2010). Advances in 3D data acquisition and processing for industrial applications. Robotics & Computer Integrated Manufacturing, 26(5), 403–413.

    Article  Google Scholar 

  36. Gecks, T., & Henrich, D. (2005). Human-robot cooperation: Safe pick-and-place operations. In Proceedings of the IEEE International Workshop on Robot & Human Interactive Communication (ROMAN 2005) (pp. 549–554).

    Google Scholar 

  37. Ebert, D., Komuro, T., Namiki, A., & Ishikawa, M. (2005). Safe human-robot-coexistence: Emergency-stop using a high-speed vision-chip. In IEEE/RSJ International Conference on Intelligent Robotic Systems (IROS 2005) (pp. 1821–1826).

    Google Scholar 

  38. Vogel, C., Walter, C., & Elkmann, N. (2013). A projection-based sensor system for safe physical human-robot collaboration. In IEEE International Conference on Intelligent Robotic Systems (IROS 2013) (pp. 5359–5364).

    Google Scholar 

  39. Tan, J. T. C., & Arai, T. (2011). Triple stereo vision system for safety monitoring of human-robot collaboration in cellular manufacturing. In Proceedings of the IEEE International Symposium on Assembly & Manufacturing (ISAM 2011) (pp. 1–6).

    Google Scholar 

  40. Schiavi, R., Bicchi, A., & Flacco, F. (2009). Integration of active and passive compliance control for safe human-robot coexistence. In Proceedings of the IEEE International Conference on Robot Automation (pp. 259–264).

    Google Scholar 

  41. Fischer, M., & Henrich, D. (2009). 3D collision detection for industrial robots and unknown obstacles using multiple depth images. Advances in Robotics Research, 111–122.

    Google Scholar 

  42. Rybski, P., Anderson-Sprecher, P., Huber, D., Niessl, C., & Simmons, R. (2012). Sensor fusion for human safety in industrial workcells. In Proceedings of the IEEE International Conference on Intelligent Robotic Systems (pp. 3612–3619).

    Google Scholar 

  43. Flacco, F., Kroeger, T., De Luca, A., & Khatib, O. (2015). A Depth space approach for evaluating distance to objects: with application to human-robot collision avoidance. Journal of Intelligent & Robotic Systems Theory, 80, 7–22.

    Article  Google Scholar 

  44. Dániel, B., Korondi, P., & Thomessen, T. (2012). Joint level collision avoidance for industrial robots. Proceedings of the IFAC, 45(22), 655–658.

    Google Scholar 

  45. Cherubini, A., Passama, R., Crosnier, A., Lasnier, A., & Fraisse, P. (2016). Collaborative manufacturing with physical human-robot interaction. Robotics & Computer Integrated Manufacture, 40, 1–13.

    Article  Google Scholar 

  46. Pilz GmbH & Co. KG @ www.safetyeye.com/. Accessed May 20, 2019.

  47. Wang, L. (2008). Wise-ShopFloor: An integrated approach for web-based collaborative manufacturing. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(4), 562–573.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Mohammed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammed, A., Wang, L. (2020). Advancing Assembly Through Human-Robot Collaboration: Framework and Implementation. In: Yan, XT., Bradley, D., Russell, D., Moore, P. (eds) Reinventing Mechatronics. Springer, Cham. https://doi.org/10.1007/978-3-030-29131-0_8

Download citation

Publish with us

Policies and ethics